Fakultät für Chemie und Chemische Biologie (CCB), Technische Universität Dortmund , 44221 Dortmund, Germany.
Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC , 50009 Zaragoza, Spain.
Acc Chem Res. 2016 Aug 16;49(8):1537-45. doi: 10.1021/acs.accounts.6b00253. Epub 2016 Jul 29.
The significance of metal ions for the function and properties of DNA and RNA, long seen primarily under biological aspects and medicinal uses, has recently gained a renewed momentum. This is a consequence of the advent of novel applications in the fields of materials science, biotechnology, and analytical sensor chemistry that relate to the designed incorporation of transition metal ions into nucleic acid base pairs. Ag(+) and Hg(2+) ions, binding to pyrimidine (pym) nucleobases, represent major players in this development. Interestingly, these metal ions were the ones that some 60 years ago started the field! At the same time, the mentioned metal ions had demonstrated a "special relationship" with the pym nucleobases cytosine, thymine, and uracil! Parallel work conducted with oligonucleotides and model nucleobases fostered numerous significant details of these interactions, in particular when X-ray crystallography was involved, correcting earlier views occasionally. Our own activities during the past three to four decades have focused on, among others, the coordination chemistry of transition and main-group metal ions with pym model nucleobases, with an emphasis on Pt(II) and Pd(II). It has always been our goal to deduce, if possible, the potential relevance of our findings for biological processes. It is interesting to put our data, in particular for trans-a2Pt(II) (a = NH3 or amine), into perspective with those of other metal ions, notably Ag(+) and Hg(2+). Irrespective of major differences in kinetics and lability/inertness between d(8) and d(10) metal ions, there is also a lot of similarity in structural aspects as a result of the preferred linear coordination geometry of these species. Moreover, the apparent clustering of metal ions to the pym nucleobases, which is presumably essential for the formation of nanoclusters on oligonucleotide scaffolds, is impressively reflected in model systems, as are reasons for inter-nucleobase cross-links containing more than a single metal ion. The present understanding of these interrelationships is a consequence of intensive research carried out during the last 60 years by numerous laboratories. For space restrictions in this Account, it was impossible to adequately highlight the valuable contributions of all of the researchers in the field of metal-pym nucleobase interactions. Explicitly this refers to colleagues not cited in the references, e.g., R. Stuart Tobias, Robert Bau, R. Bruce Martin, Colin J. L. Lock, Katsuyuki Aoki, Helmut Sigel, and Michael J. Clarke, among others.
金属离子对 DNA 和 RNA 功能和性质的意义,长期以来主要从生物学和医学应用的角度来看待,最近又重新受到关注。这是由于在材料科学、生物技术和分析传感器化学等领域的新应用的出现而产生的,这些应用涉及到将过渡金属离子设计地整合到核酸碱基对中。Ag(+)和 Hg(2+)离子与嘧啶(pym)核碱基结合,是这一发展的主要参与者。有趣的是,大约 60 年前,正是这些金属离子开创了这个领域!与此同时,上述金属离子与嘧啶(pym)核碱基胞嘧啶、胸腺嘧啶和尿嘧啶之间存在着“特殊关系”!与寡核苷酸和模型核碱基一起进行的平行工作促进了这些相互作用的许多重要细节,特别是当涉及到 X 射线晶体学时,偶尔会纠正早期的观点。在过去的三到四十年里,我们自己的活动重点是研究过渡金属和主族金属离子与 pym 模型核碱基的配位化学,重点是 Pt(II)和 Pd(II)。我们的目标一直是,如果可能的话,推断我们的发现对生物过程的潜在相关性。将我们的数据,特别是对于 trans-a2Pt(II)(a = NH3 或胺),与其他金属离子(特别是 Ag(+)和 Hg(2+))的数据进行对比是很有趣的。尽管 d(8)和 d(10)金属离子在动力学和稳定性/惰性方面存在较大差异,但由于这些物种优先采用线性配位几何结构,在结构方面也有很多相似之处。此外,金属离子与 pym 核碱基的明显聚集,这对于在寡核苷酸支架上形成纳米簇是必不可少的,这在模型系统中得到了令人印象深刻的反映,就像含有不止一个金属离子的核碱基间交联的原因一样。目前对这些相互关系的理解是过去 60 年来许多实验室进行的密集研究的结果。由于本综述的篇幅限制,不可能充分强调金属-pym 核碱基相互作用领域所有研究人员的宝贵贡献。明确地说,这指的是参考文献中未引用的同事,例如 R. Stuart Tobias、Robert Bau、R. Bruce Martin、Colin J. L. Lock、Katsuyuki Aoki、Helmut Sigel 和 Michael J. Clarke 等人。