Katz M J, Lasek R J
Proc Natl Acad Sci U S A. 1978 Mar;75(3):1349-52. doi: 10.1073/pnas.75.3.1349.
Nervous systems are composed of populations of cells that are synaptically connected in a highly predictable manner, and we have called two interconnected populations a pair of matching populations. Heritable genetic changes that affect a pair of matching populations can be evolutionary only when this matching quality is not disrupted. We distinguish two types of heritable change. Concordant heritable changes autonomously preserve the match and are thus automatically candidates for what we call type I evolutionary change. Nonconcordant heritable changes, on the other hand, are those that do not autonomously preserve the match. Those nonconcordant heritable changes that can use other normally present ontogenetic mechanisms to preserve the match are candidates for what we call type II evolutionary change. One example of such an ontogenetic mechanism consists of the production of excess neuroblasts and the subsequent weeding out (via cell death) of those that do not successfully match. Because normal ontogeny is an integral part of type II evolutionary change, ontogenetic manipulations can give evolutionary insights. Embryonic graft experiments, in particular, can elucidate the nature of ontogenetic mechanisms that participate in type II changes. Thus, some developmental experiments can be considered to be evolutionary experiments.
神经系统由以高度可预测方式进行突触连接的细胞群体组成,我们将两个相互连接的群体称为一对匹配群体。只有当这种匹配质量未被破坏时,影响一对匹配群体的可遗传基因变化才可能具有进化意义。我们区分两种类型的可遗传变化。一致的可遗传变化能自主保持匹配,因此自动成为我们所谓的I型进化变化的候选者。另一方面,不一致的可遗传变化是那些不能自主保持匹配的变化。那些能够利用其他正常存在的个体发育机制来保持匹配的不一致可遗传变化,是我们所谓的II型进化变化的候选者。这种个体发育机制的一个例子包括产生过量的神经母细胞,以及随后通过细胞死亡淘汰那些未能成功匹配的细胞。由于正常个体发育是II型进化变化的一个组成部分,个体发育操作可以提供进化方面的见解。特别是胚胎移植实验,可以阐明参与II型变化的个体发育机制的性质。因此,一些发育实验可以被视为进化实验。