Suppr超能文献

基于高密度表面肌电图分解的运动单位数量估计

Motor unit number estimation based on high-density surface electromyography decomposition.

作者信息

Peng Yun, He Jinbao, Yao Bo, Li Sheng, Zhou Ping, Zhang Yingchun

机构信息

Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, Houston, TX 77204, USA.

School of Electronic and Information Engineering, Ningbo University of Technology, Ningbo, China.

出版信息

Clin Neurophysiol. 2016 Sep;127(9):3059-3065. doi: 10.1016/j.clinph.2016.06.014. Epub 2016 Jun 25.

Abstract

OBJECTIVE

To advance the motor unit number estimation (MUNE) technique using high density surface electromyography (EMG) decomposition.

METHODS

The K-means clustering convolution kernel compensation algorithm was employed to detect the single motor unit potentials (SMUPs) from high-density surface EMG recordings of the biceps brachii muscles in eight healthy subjects. Contraction forces were controlled at 10%, 20% and 30% of the maximal voluntary contraction (MVC). Achieved MUNE results and the representativeness of the SMUP pools were evaluated using a high-density weighted-average method.

RESULTS

Mean numbers of motor units were estimated as 288±132, 155±87, 107±99 and 132±61 by using the developed new MUNE at 10%, 20%, 30% and 10-30% MVCs, respectively. Over 20 SMUPs were obtained at each contraction level, and the mean residual variances were lower than 10%.

CONCLUSIONS

The new MUNE method allows a convenient and non-invasive collection of a large size of SMUP pool with great representativeness. It provides a useful tool for estimating the motor unit number of proximal muscles.

SIGNIFICANCE

The present new MUNE method successfully avoids the use of intramuscular electrodes or multiple electrical stimuli which is required in currently available MUNE techniques; as such the new MUNE method can minimize patient discomfort for MUNE tests.

摘要

目的

利用高密度表面肌电图(EMG)分解技术推进运动单位数量估计(MUNE)技术。

方法

采用K均值聚类卷积核补偿算法,从8名健康受试者肱二头肌的高密度表面肌电图记录中检测单个运动单位电位(SMUPs)。收缩力控制在最大自主收缩(MVC)的10%、20%和30%。使用高密度加权平均法评估获得的MUNE结果和SMUP池的代表性。

结果

使用开发的新MUNE方法,在10%、20%、30%和10 - 30%MVC时,估计的运动单位平均数量分别为288±132、155±87、107±99和132±61。在每个收缩水平获得了超过20个SMUPs,平均残余方差低于10%。

结论

新的MUNE方法允许方便且无创地收集具有高度代表性的大尺寸SMUP池。它为估计近端肌肉的运动单位数量提供了一个有用的工具。

意义

目前新的MUNE方法成功避免了使用目前可用MUNE技术中所需的肌内电极或多次电刺激;因此,新的MUNE方法可以将MUNE测试给患者带来的不适降至最低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0699/4980248/5d710113a6f2/nihms798503f1.jpg

相似文献

4
Motor unit number estimation (MUNE): Where are we now?运动单位数量估计(MUNE):我们现在在哪里?
Clin Neurophysiol. 2018 Aug;129(8):1507-1516. doi: 10.1016/j.clinph.2018.04.748. Epub 2018 May 24.

引用本文的文献

7
CMAP Scan Examination of the First Dorsal Interosseous Muscle After Spinal Cord Injury.脊髓损伤后第一背侧骨间肌的 CMAP 扫描检查。
IEEE Trans Neural Syst Rehabil Eng. 2021;29:1199-1205. doi: 10.1109/TNSRE.2021.3088061. Epub 2021 Jun 30.

本文引用的文献

6
A Novel Framework Based on FastICA for High Density Surface EMG Decomposition.一种基于快速独立成分分析的高密度表面肌电信号分解新框架。
IEEE Trans Neural Syst Rehabil Eng. 2016 Jan;24(1):117-27. doi: 10.1109/TNSRE.2015.2412038. Epub 2015 Mar 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验