Suppr超能文献

基于多通道表面肌电图记录的三维神经支配区成像

Three-Dimensional Innervation Zone Imaging from Multi-Channel Surface EMG Recordings.

作者信息

Liu Yang, Ning Yong, Li Sheng, Zhou Ping, Rymer William Z, Zhang Yingchun

机构信息

Department of Biomedical Engineering, University of Houston, 3605 Cullen Blvd, Houston, TX77004, USA.

Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, 7000 Fannin St., Houston, TX, USA.

出版信息

Int J Neural Syst. 2015 Sep;25(6):1550024. doi: 10.1142/S0129065715500240.

Abstract

There is an unmet need to accurately identify the locations of innervation zones (IZs) of spastic muscles, so as to guide botulinum toxin (BTX) injections for the best clinical outcome. A novel 3D IZ imaging (3DIZI) approach was developed by combining the bioelectrical source imaging and surface electromyogram (EMG) decomposition methods to image the 3D distribution of IZs in the target muscles. Surface IZ locations of motor units (MUs), identified from the bipolar map of their MU action potentials (MUAPs) were employed as a prior knowledge in the 3DIZI approach to improve its imaging accuracy. The performance of the 3DIZI approach was first optimized and evaluated via a series of designed computer simulations, and then validated with the intramuscular EMG data, together with simultaneously recorded 128-channel surface EMG data from the biceps of two subjects. Both simulation and experimental validation results demonstrate the high performance of the 3DIZI approach in accurately reconstructing the distributions of IZs and the dynamic propagation of internal muscle activities in the biceps from high-density surface EMG recordings.

摘要

准确识别痉挛肌肉的神经支配区(IZs)位置以指导肉毒杆菌毒素(BTX)注射从而获得最佳临床效果的需求尚未得到满足。通过结合生物电源成像和表面肌电图(EMG)分解方法,开发了一种新颖的3D神经支配区成像(3DIZI)方法,以对目标肌肉中IZs的三维分布进行成像。从运动单位(MUs)的双极图中识别出的MUs的表面IZ位置,在3DIZI方法中用作先验知识,以提高其成像精度。首先通过一系列设计的计算机模拟对3DIZI方法的性能进行优化和评估,然后用肌内EMG数据以及同时记录的来自两名受试者肱二头肌的128通道表面EMG数据进行验证。模拟和实验验证结果均表明,3DIZI方法在从高密度表面EMG记录中准确重建IZs分布以及肱二头肌内部肌肉活动的动态传播方面具有高性能。

相似文献

1
Three-Dimensional Innervation Zone Imaging from Multi-Channel Surface EMG Recordings.
Int J Neural Syst. 2015 Sep;25(6):1550024. doi: 10.1142/S0129065715500240.
2
Three dimensional innervation zone imaging in spastic muscles of stroke survivors.
J Neural Eng. 2019 Jun;16(3):034001. doi: 10.1088/1741-2552/ab0fe1. Epub 2019 Mar 14.
3
Spatial characterization of innervation zones under electrically elicited M-wave.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:121-124. doi: 10.1109/EMBC.2016.7590655.
6
Motor unit innervation zone localization based on robust linear regression analysis.
Comput Biol Med. 2019 Mar;106:65-70. doi: 10.1016/j.compbiomed.2019.01.007. Epub 2019 Jan 14.
7
Internal muscle activity imaging from multi-channel surface EMG recordings: a validation study.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3559-61. doi: 10.1109/EMBC.2014.6944391.
8
Automatic localisation of innervation zones: a simulation study of the external anal sphincter.
J Electromyogr Kinesiol. 2009 Dec;19(6):e413-21. doi: 10.1016/j.jelekin.2009.02.002. Epub 2009 Mar 9.

引用本文的文献

2
[A new method for high-density surface electromyography decomposition in dynamic muscle contraction].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Dec 25;38(6):1081-1086. doi: 10.7507/1001-5515.202104020.
4
A Preliminary Study of Effects of Channel Number and Location on the Repeatability of Motor Unit Number Index (MUNIX).
Front Neurol. 2020 Mar 17;11:191. doi: 10.3389/fneur.2020.00191. eCollection 2020.
5
Global Innervation Zone Identification With High-Density Surface Electromyography.
IEEE Trans Biomed Eng. 2020 Mar;67(3):718-725. doi: 10.1109/TBME.2019.2919906. Epub 2019 May 30.
6
Three dimensional innervation zone imaging in spastic muscles of stroke survivors.
J Neural Eng. 2019 Jun;16(3):034001. doi: 10.1088/1741-2552/ab0fe1. Epub 2019 Mar 14.
7
Motor unit innervation zone localization based on robust linear regression analysis.
Comput Biol Med. 2019 Mar;106:65-70. doi: 10.1016/j.compbiomed.2019.01.007. Epub 2019 Jan 14.
9
Imaging three-dimensional innervation zone distribution in muscles from M-wave recordings.
J Neural Eng. 2017 Jun;14(3):036011. doi: 10.1088/1741-2552/aa65dd. Epub 2017 Mar 30.
10
Motor unit number estimation based on high-density surface electromyography decomposition.
Clin Neurophysiol. 2016 Sep;127(9):3059-3065. doi: 10.1016/j.clinph.2016.06.014. Epub 2016 Jun 25.

本文引用的文献

1
STRAPS: A Fully Data-Driven Spatio-Temporally Regularized Algorithm for M/EEG Patch Source Imaging.
Int J Neural Syst. 2015 Jun;25(4):1550016. doi: 10.1142/S0129065715500161. Epub 2015 Mar 12.
2
Improving human activity recognition and its application in early stroke diagnosis.
Int J Neural Syst. 2015 Jun;25(4):1450036. doi: 10.1142/S0129065714500361. Epub 2014 Nov 10.
3
Internal muscle activity imaging from multi-channel surface EMG recordings: a validation study.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3559-61. doi: 10.1109/EMBC.2014.6944391.
4
Surface EMG decomposition based on K-means clustering and convolution kernel compensation.
IEEE J Biomed Health Inform. 2015 Mar;19(2):471-7. doi: 10.1109/JBHI.2014.2328497. Epub 2014 Jun 2.
5
Extraction of neural control commands using myoelectric pattern recognition: a novel application in adults with cerebral palsy.
Int J Neural Syst. 2014 Nov;24(7):1450022. doi: 10.1142/S0129065714500221. Epub 2014 Sep 22.
7
A novel spatiotemporal muscle activity imaging approach based on the Extended Kalman Filter.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6236-8. doi: 10.1109/EMBC.2012.6347419.
8
Poststroke spasticity: sequelae and burden on stroke survivors and caregivers.
Neurology. 2013 Jan 15;80(3 Suppl 2):S45-52. doi: 10.1212/WNL.0b013e3182764c86.
9
Localization of epileptic foci using multimodality neuroimaging.
Int J Neural Syst. 2013 Feb;23(1):1230001. doi: 10.1142/S012906571230001X. Epub 2012 Dec 16.
10
Filtering of surface EMG using ensemble empirical mode decomposition.
Med Eng Phys. 2013 Apr;35(4):537-42. doi: 10.1016/j.medengphy.2012.10.009. Epub 2012 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验