Khelashvili George, Schmidt Solveig Gaarde, Shi Lei, Javitch Jonathan A, Gether Ulrik, Loland Claus J, Weinstein Harel
From the Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York 10065,
the Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark.
J Biol Chem. 2016 Sep 16;291(38):19786-99. doi: 10.1074/jbc.M116.731455. Epub 2016 Jul 29.
Ions play key mechanistic roles in the gating dynamics of neurotransmitter:sodium symporters (NSSs). In recent microsecond scale molecular dynamics simulations of a complete model of the dopamine transporter, a NSS protein, we observed a partitioning of K(+) ions from the intracellular side toward the unoccupied Na2 site of dopamine transporter following the release of the Na2-bound Na(+) Here we evaluate with computational simulations and experimental measurements of ion affinities under corresponding conditions, the consequences of K(+) binding in the Na2 site of LeuT, a bacterial homolog of NSS, when both Na(+) ions and substrate have left, and the transporter prepares for a new cycle. We compare the results with the consequences of binding Na(+) in the same apo system. Analysis of >50-μs atomistic molecular dynamics and enhanced sampling trajectories of constructs with Glu(290), either charged or neutral, point to the Glu(290) protonation state as a main determinant in the structural reconfiguration of the extracellular vestibule of LeuT in which a "water gate" opens through coordinated motions of residues Leu(25), Tyr(108), and Phe(253) The resulting water channel enables the binding/dissociation of the Na(+) and K(+) ions that are prevalent, respectively, in the extracellular and intracellular environments.
离子在神经递质-钠同向转运体(NSSs)的门控动力学中发挥着关键的机制作用。在最近对多巴胺转运体(一种NSS蛋白)完整模型进行的微秒级分子动力学模拟中,我们观察到在与Na2结合的Na+释放后,K+离子从细胞内侧向多巴胺转运体未占据的Na2位点进行分配。在此,我们通过计算模拟和相应条件下离子亲和力的实验测量,评估当Na+离子和底物都离开且转运体准备进入新循环时,K+结合在NSS细菌同源物LeuT的Na2位点的后果。我们将结果与在相同无配体系统中结合Na+的后果进行比较。对带有带电或中性Glu(290)的构建体进行的超过50微秒的原子分子动力学和增强采样轨迹分析表明,Glu(290)的质子化状态是LeuT细胞外前庭结构重排的主要决定因素,其中通过Leu(25)、Tyr(108)和Phe(253)残基的协同运动打开了一个“水门”。由此产生的水通道使得分别在细胞外和细胞内环境中普遍存在的Na+和K+离子能够进行结合/解离。