Suppr超能文献

用于大失准角初始对准的模糊自适应强跟踪尺度无迹卡尔曼滤波器

Fuzzy adaptive strong tracking scaled unscented Kalman filter for initial alignment of large misalignment angles.

作者信息

Li Jing, Song Ningfang, Yang Gongliu, Jiang Rui

机构信息

School of Instrumentation Science and Opto-electronics Engineering, Beihang University, 37 Xueyuan Road, Beijing 100191, China.

出版信息

Rev Sci Instrum. 2016 Jul;87(7):075118. doi: 10.1063/1.4959561.

Abstract

In the initial alignment process of strapdown inertial navigation system (SINS), large misalignment angles always bring nonlinear problem, which can usually be processed using the scaled unscented Kalman filter (SUKF). In this paper, the problem of large misalignment angles in SINS alignment is further investigated, and the strong tracking scaled unscented Kalman filter (STSUKF) is proposed with fixed parameters to improve convergence speed, while these parameters are artificially constructed and uncertain in real application. To further improve the alignment stability and reduce the parameters selection, this paper proposes a fuzzy adaptive strategy combined with STSUKF (FUZZY-STSUKF). As a result, initial alignment scheme of large misalignment angles based on FUZZY-STSUKF is designed and verified by simulations and turntable experiment. The results show that the scheme improves the accuracy and convergence speed of SINS initial alignment compared with those based on SUKF and STSUKF.

摘要

在捷联惯性导航系统(SINS)的初始对准过程中,大失准角总会带来非线性问题,通常可采用尺度无迹卡尔曼滤波器(SUKF)进行处理。本文进一步研究了SINS对准中的大失准角问题,提出了具有固定参数的强跟踪尺度无迹卡尔曼滤波器(STSUKF)以提高收敛速度,然而这些参数是人为构造的且在实际应用中具有不确定性。为进一步提高对准稳定性并减少参数选择,本文提出了一种结合STSUKF的模糊自适应策略(FUZZY - STSUKF)。在此基础上,设计了基于FUZZY - STSUKF的大失准角初始对准方案,并通过仿真和转台实验进行了验证。结果表明,与基于SUKF和STSUKF的方案相比,该方案提高了SINS初始对准的精度和收敛速度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验