Nakagaki Masayuki, Sakaki Shigeyoshi
Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishihiraki-cho, Sakyo-ku, Kyoto 606-8103, Japan.
Phys Chem Chem Phys. 2016 Oct 14;18(38):26365-75. doi: 10.1039/c6cp03312a. Epub 2016 Aug 1.
Spin multiplicities and coordination structures of dinitrogen-bridged hetero-dinuclear complexes of 3d metals, (μ-N2)[M(1)(AIP)][M(2)(AIP)] (AIPH = (Z)-1-amino-3-imino-prop-1-ene; M(1), M(2) = V(i) to Co(i)), were investigated using the CASPT2 method. (μ-N2)[V(AIP)][Cr(AIP)] has a low spin doublet ((2)B2) ground state with an η(2)-side-on dinitrogen coordination structure but (μ-N2)[Mn(AIP)][Fe(AIP)] has a high spin octet ((8)A2) ground state with an η(1)-end-on coordination structure. These results are similar to those of the homo-dinuclear Cr and Fe analogues, respectively. In (μ-N2)[Cr(AIP)][M(AIP)] (M = Mn(i), Fe(i), or Co(i)) consisting of an early 3d metal (Cr) and a late one (Mn to Co), on the other hand, we found characteristic features in the geometry and the ground state electronic structure which are different from those of homo-dinuclear analogues. The Cr-Mn complex has a high spin decet ((10)B1) ground state with an η(2)-side-on structure. This decet state has the highest spin multiplicity in the dinuclear transition metal complexes, to our knowledge. The A2 state with a doublet spin multiplicity is moderately less stable than the (10)B1 state. The optimized structures and the molecular orbitals indicate that the Cr atom strongly interacts with the N2 moiety in the (10)B1 state but the Mn atom strongly interacts with the N2 moiety in the (2)A2 state. The Cr-Fe complex has a high spin nonet ((9)B1) ground state with an η(2)-side-on structure like the Cr-Mn complex, but only the Cr-Co complex has a medium spin quartet (4)A2 ground state with an η(2)-side-on structure. The different ground electronic state of the Cr-Co complex arises from the presence of 3d orbitals at low energy. Based on these results, it is concluded that the geometry is determined by the Cr center but the electronic structure and the spin multiplicity are determined by the combination of early and late 3d metals in the dinitrogen-bridged hetero-dinuclear chelates of 3d metals.
采用CASPT2方法研究了3d金属的双氮桥连异双核配合物(μ-N₂)[M(1)(AIP)][M(2)(AIP)](AIPH = (Z)-1-氨基-3-亚氨基-丙-1-烯;M(1), M(2) = V(i)至Co(i))的自旋多重度和配位结构。(μ-N₂)[V(AIP)][Cr(AIP)]具有低自旋二重态((2)B₂)基态,其氮分子配位结构为η(2)-侧基配位,但(μ-N₂)[Mn(AIP)][Fe(AIP)]具有高自旋八重态((8)A₂)基态,其配位结构为η(1)-端基配位。这些结果分别与同双核Cr和Fe类似物的结果相似。另一方面,在由早期3d金属(Cr)和晚期3d金属(Mn至Co)组成的(μ-N₂)[Cr(AIP)][M(AIP)](M = Mn(i)、Fe(i)或Co(i))中,我们发现其几何结构和基态电子结构具有与同双核类似物不同的特征。Cr-Mn配合物具有高自旋十重态((10)B₁)基态,其结构为η(2)-侧基配位。据我们所知,这种十重态在双核过渡金属配合物中具有最高的自旋多重度。自旋多重度为二重态的A₂态比(10)B₁态稳定性稍低。优化后的结构和分子轨道表明,在(十重态)B₁态中Cr原子与N₂部分强烈相互作用,而在(二重态)A₂态中Mn原子与N₂部分强烈相互作用。Cr-Fe配合物具有高自旋九重态((9)B₁)基态,其结构与Cr-Mn配合物一样为η(2)-侧基配位,但只有Cr-Co配合物具有中自旋四重态(4)A₂基态,其结构为η(2)-侧基配位。Cr-Co配合物不同的基态电子态源于低能量3d轨道的存在。基于这些结果,可以得出结论,在3d金属的双氮桥连异双核螯合物中,几何结构由Cr中心决定,而电子结构和自旋多重度由早期和晚期3d金属的组合决定。