Suppr超能文献

TFIIH激酶的工程化共价失活揭示了一个延伸检查点并导致广泛的mRNA稳定。

Engineered Covalent Inactivation of TFIIH-Kinase Reveals an Elongation Checkpoint and Results in Widespread mRNA Stabilization.

作者信息

Rodríguez-Molina Juan B, Tseng Sandra C, Simonett Shane P, Taunton Jack, Ansari Aseem Z

机构信息

Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.

Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA.

出版信息

Mol Cell. 2016 Aug 4;63(3):433-44. doi: 10.1016/j.molcel.2016.06.036. Epub 2016 Jul 28.

Abstract

During transcription initiation, the TFIIH-kinase Kin28/Cdk7 marks RNA polymerase II (Pol II) by phosphorylating the C-terminal domain (CTD) of its largest subunit. Here we describe a structure-guided chemical approach to covalently and specifically inactivate Kin28 kinase activity in vivo. This method of irreversible inactivation recapitulates both the lethal phenotype and the key molecular signatures that result from genetically disrupting Kin28 function in vivo. Inactivating Kin28 impacts promoter release to differing degrees and reveals a "checkpoint" during the transition to productive elongation. While promoter-proximal pausing is not observed in budding yeast, inhibition of Kin28 attenuates elongation-licensing signals, resulting in Pol II accumulation at the +2 nucleosome and reduced transition to productive elongation. Furthermore, upon inhibition, global stabilization of mRNA masks different degrees of reduction in nascent transcription. This study resolves long-standing controversies on the role of Kin28 in transcription and provides a rational approach to irreversibly inhibit other kinases in vivo.

摘要

在转录起始过程中,TFIIH激酶Kin28/Cdk7通过磷酸化其最大亚基的C末端结构域(CTD)对RNA聚合酶II(Pol II)进行标记。在此,我们描述了一种基于结构的化学方法,可在体内共价且特异性地使Kin28激酶活性失活。这种不可逆失活方法概括了体内基因破坏Kin28功能所导致的致死表型和关键分子特征。使Kin28失活对启动子释放有不同程度的影响,并揭示了向有效延伸转变过程中的一个“检查点”。虽然在芽殖酵母中未观察到启动子近端暂停,但抑制Kin28会减弱延伸许可信号,导致Pol II在+2核小体处积累,并减少向有效延伸的转变。此外,抑制后,mRNA的整体稳定性掩盖了新生转录不同程度的降低。这项研究解决了关于Kin28在转录中作用的长期争议,并提供了一种在体内不可逆抑制其他激酶的合理方法。

相似文献

1
Engineered Covalent Inactivation of TFIIH-Kinase Reveals an Elongation Checkpoint and Results in Widespread mRNA Stabilization.
Mol Cell. 2016 Aug 4;63(3):433-44. doi: 10.1016/j.molcel.2016.06.036. Epub 2016 Jul 28.
2
Chemical inhibition of the TFIIH-associated kinase Cdk7/Kin28 does not impair global mRNA synthesis.
Proc Natl Acad Sci U S A. 2007 Apr 3;104(14):5812-7. doi: 10.1073/pnas.0611505104. Epub 2007 Mar 28.
3
Mutual targeting of mediator and the TFIIH kinase Kin28.
J Biol Chem. 2004 Jul 9;279(28):29114-20. doi: 10.1074/jbc.M404426200. Epub 2004 May 4.
5
Phosphorylation of the RNA polymerase II C-terminal domain by TFIIH kinase is not essential for transcription of Saccharomyces cerevisiae genome.
Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14276-80. doi: 10.1073/pnas.0903642106. Epub 2009 Aug 7.
7
TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II.
Mol Cell. 2009 May 15;34(3):387-93. doi: 10.1016/j.molcel.2009.04.016.
8
CDK7 kinase activity promotes RNA polymerase II promoter escape by facilitating initiation factor release.
Mol Cell. 2024 Jun 20;84(12):2287-2303.e10. doi: 10.1016/j.molcel.2024.05.007. Epub 2024 May 30.

引用本文的文献

2
Decay drives RNA abundance regulation using three distinct regulatory mechanisms.
bioRxiv. 2025 Jun 2:2025.05.09.653099. doi: 10.1101/2025.05.09.653099.
4
The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses.
Crit Rev Biochem Mol Biol. 2024 Oct;59(5):267-309. doi: 10.1080/10409238.2024.2408562. Epub 2024 Oct 3.
5
Multiple direct and indirect roles of the Paf1 complex in transcription elongation, splicing, and histone modifications.
Cell Rep. 2024 Sep 24;43(9):114730. doi: 10.1016/j.celrep.2024.114730. Epub 2024 Sep 7.
6
Homeostasis of mRNA concentrations through coupling transcription, export, and degradation.
iScience. 2024 Jul 18;27(8):110531. doi: 10.1016/j.isci.2024.110531. eCollection 2024 Aug 16.
7
Chromatin endogenous cleavage provides a global view of yeast RNA polymerase II transcription kinetics.
bioRxiv. 2024 Oct 10:2024.07.08.602535. doi: 10.1101/2024.07.08.602535.
9
Small molecule inhibitors of transcriptional cyclin-dependent kinases impose HIV-1 latency, presenting "block and lock" treatment strategies.
Antimicrob Agents Chemother. 2024 Mar 6;68(3):e0107223. doi: 10.1128/aac.01072-23. Epub 2024 Feb 6.
10
Coordination of rhythmic RNA synthesis and degradation orchestrates 24- and 12-h RNA expression patterns in mouse fibroblasts.
Proc Natl Acad Sci U S A. 2024 Feb 13;121(7):e2314690121. doi: 10.1073/pnas.2314690121. Epub 2024 Feb 5.

本文引用的文献

2
THZ1 Reveals Roles for Cdk7 in Co-transcriptional Capping and Pausing.
Mol Cell. 2015 Aug 20;59(4):576-87. doi: 10.1016/j.molcel.2015.06.032. Epub 2015 Aug 6.
3
Uncoupling Promoter Opening from Start-Site Scanning.
Mol Cell. 2015 Jul 2;59(1):133-8. doi: 10.1016/j.molcel.2015.05.021. Epub 2015 Jun 11.
4
Targeting transcription regulation in cancer with a covalent CDK7 inhibitor.
Nature. 2014 Jul 31;511(7511):616-20. doi: 10.1038/nature13393. Epub 2014 Jun 22.
5
TFIIH phosphorylation of the Pol II CTD stimulates mediator dissociation from the preinitiation complex and promoter escape.
Mol Cell. 2014 May 22;54(4):601-12. doi: 10.1016/j.molcel.2014.03.024. Epub 2014 Apr 17.
6
Kin28 regulates the transient association of Mediator with core promoters.
Nat Struct Mol Biol. 2014 May;21(5):449-55. doi: 10.1038/nsmb.2810. Epub 2014 Apr 6.
7
Rat1p maintains RNA polymerase II CTD phosphorylation balance.
RNA. 2014 Apr;20(4):551-8. doi: 10.1261/rna.041129.113. Epub 2014 Feb 5.
8
Global analysis of eukaryotic mRNA degradation reveals Xrn1-dependent buffering of transcript levels.
Mol Cell. 2013 Oct 10;52(1):52-62. doi: 10.1016/j.molcel.2013.09.010.
9
RNA polymerase II C-terminal domain: Tethering transcription to transcript and template.
Chem Rev. 2013 Nov 13;113(11):8423-55. doi: 10.1021/cr400158h. Epub 2013 Sep 16.
10
The RNA polymerase II carboxy-terminal domain (CTD) code.
Chem Rev. 2013 Nov 13;113(11):8456-90. doi: 10.1021/cr400071f. Epub 2013 Aug 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验