Kang Suhyun, Lu Wenbin, Liu Mengling
Department of Statistics, North Carolina State University, Raleigh, North Carolina, U.S.A.
Department of Environmental Medicine, New York University School of Medicine, New York, New York, U.S.A.
Biometrics. 2017 Mar;73(1):114-123. doi: 10.1111/biom.12573. Epub 2016 Aug 1.
Case-cohort (Prentice, 1986) and nested case-control (Thomas, 1977) designs have been widely used as a cost-effective alternative to the full-cohort design. In this article, we propose an efficient likelihood-based estimation method for the accelerated failure time model under case-cohort and nested case-control designs. An EM algorithm is developed to maximize the likelihood function and a kernel smoothing technique is adopted to facilitate the estimation in the M-step of the EM algorithm. We show that the proposed estimators for the regression coefficients are consistent and asymptotically normal. The asymptotic variance of the estimators can be consistently estimated using an EM-aided numerical differentiation method. Simulation studies are conducted to evaluate the finite-sample performance of the estimators and an application to a Wilms tumor data set is also given to illustrate the methodology.
病例队列设计(Prentice,1986年)和巢式病例对照设计(Thomas,1977年)已被广泛用作全队列设计的一种经济高效的替代方案。在本文中,我们针对病例队列设计和巢式病例对照设计下的加速失效时间模型提出了一种基于似然的有效估计方法。开发了一种期望最大化(EM)算法来最大化似然函数,并采用核平滑技术来促进EM算法M步中的估计。我们表明,所提出的回归系数估计量是一致的且渐近正态。估计量的渐近方差可以使用EM辅助数值微分方法进行一致估计。进行了模拟研究以评估估计量的有限样本性能,并给出了对威尔姆斯瘤数据集的应用以说明该方法。