Liu Bo, Lu Wenbin, Zhang Jiajia
Department of Statistics, North Carolina State University, 2311 Stinson Drive, Raleigh, North Carolina 27695, U.S.A.
Department of Epidemiology and Biostatistics, University of South Carolina, 800 Sumter Street, Columbia, South Carolina 29208, U.S.A.
Biometrika. 2013;100(3):741-755. doi: 10.1093/biomet/ast012.
Clustered survival data frequently arise in biomedical applications, where event times of interest are clustered into groups such as families. In this article we consider an accelerated failure time frailty model for clustered survival data and develop nonparametric maximum likelihood estimation for it via a kernel smoother aided EM algorithm. We show that the proposed estimator for the regression coefficients is consistent, asymptotically normal and semiparametric efficient when the kernel bandwidth is properly chosen. An EM-aided numerical differentiation method is derived for estimating its variance. Simulation studies evaluate the finite sample performance of the estimator, and it is applied to the Diabetic Retinopathy data set.
聚类生存数据在生物医学应用中经常出现,其中感兴趣的事件时间被聚类成如家庭等组。在本文中,我们考虑用于聚类生存数据的加速失效时间脆弱模型,并通过核平滑辅助的期望最大化(EM)算法为其开发非参数最大似然估计。我们表明,当核带宽被适当选择时,所提出的回归系数估计器是一致的、渐近正态的且半参数有效的。推导了一种用于估计其方差的EM辅助数值微分方法。模拟研究评估了估计器的有限样本性能,并将其应用于糖尿病视网膜病变数据集。