Erem Burak, Hyde Damon E, Peters Jurriaan M, Duffy Frank H, Warfield Simon K
IEEE Trans Med Imaging. 2017 Jan;36(1):98-110. doi: 10.1109/TMI.2016.2595329. Epub 2016 Jul 27.
We propose an algorithm for electrical source imaging of epileptic discharges that takes a data-driven approach to regularizing the dynamics of solutions. The method is based on linear system identification on short time segments, combined with a classical inverse solution approach. Whereas ensemble averaging of segments or epochs discards inter-segment variations by averaging across them, our approach explicitly models them. Indeed, it may even be possible to avoid the need for the time-consuming process of marking epochs containing discharges altogether. We demonstrate that this approach can produce both stable and accurate inverse solutions in experiments using simulated data and real data from epilepsy patients. In an illustrative example, we show that we are able to image propagation using this approach. We show that when applied to imaging seizure data, our approach reproducibly localized frequent seizure activity to within the margins of surgeries that led to patients' seizure freedom. The same approach could be used in the planning of epilepsy surgeries, as a way to localize potentially epileptogenic tissue that should be resected.
我们提出了一种用于癫痫放电电源成像的算法,该算法采用数据驱动的方法来正则化解的动态过程。该方法基于短时间段上的线性系统识别,并结合经典的逆解方法。虽然对段或时期进行总体平均会通过对它们进行平均来丢弃段间变化,但我们的方法明确地对它们进行建模。实际上,甚至有可能完全避免标记包含放电的时期这一耗时过程的需要。我们证明,在使用模拟数据和癫痫患者的真实数据进行的实验中,这种方法可以产生稳定且准确的逆解。在一个说明性示例中,我们展示了我们能够使用这种方法对传播进行成像。我们表明,当应用于癫痫发作数据成像时,我们的方法可重复地将频繁的癫痫发作活动定位在导致患者癫痫发作缓解的手术边缘范围内。同样的方法可用于癫痫手术的规划,作为定位应切除的潜在致痫组织的一种方式。