Children's Hospital Boston, Boston, MA 02115, USA.
Neuroimage. 2012 Sep;62(3):2161-70. doi: 10.1016/j.neuroimage.2012.05.055. Epub 2012 May 29.
Electromagnetic source localization (ESL) provides non-invasive evaluation of brain electrical activity for neurology research and clinical evaluation of neurological disorders such as epilepsy. Accurate ESL results are dependent upon the use of patient specific models of bioelectric conductivity. While the effects of anisotropic conductivities in the skull and white matter have been previously studied, little attention has been paid to the accurate modeling of the highly conductive cerebrospinal fluid (CSF) region. This study examines the effect that partial volume errors in CSF segmentations have upon the ESL bioelectric model. These errors arise when segmenting sulcal channels whose widths are similar to the resolution of the magnetic resonance (MR) images used for segmentation, as some voxels containing both CSF and gray matter cannot be definitively assigned a single label. These problems, particularly prevalent in pediatric populations, make voxelwise segmentation of CSF compartments a difficult problem. Given the high conductivity of CSF, errors in modeling this region may result in large errors in the bioelectric model. We introduce here a new approach for using estimates of partial volume fractions in the construction of patient specific bioelectric models. In regions where partial volume errors are expected, we use a layered gray matter-CSF model to construct equivalent anisotropic conductivity tensors. This allows us to account for the inhomogeneity of the tissue within each voxel. Using this approach, we are able to reduce the error in the resulting bioelectric models, as evaluated against a known high resolution model. Additionally, this model permits us to evaluate the effects of sulci modeling errors and quantify the mean error as a function of the change in sulci width. Our results suggest that both under and over-estimation of the CSF region leads to significant errors in the bioelectric model. While a model with fixed partial volume fraction is able to reduce this error, we see the largest improvement when using voxel specific partial volume estimates. Our cross-model analyses suggest that an approximately linear relationship exists between sulci error and the error in the resulting bioelectric model. Given the difficulty of accurately segmenting narrow sulcal channels, this suggests that our approach may be capable of improving the accuracy of patient specific bioelectric models by several percent, while introducing only minimal additional computational requirements.
电磁源定位 (ESL) 为神经病学研究和癫痫等神经紊乱的临床评估提供了非侵入性的脑电活动评估。准确的 ESL 结果取决于使用患者特定的生物电导率模型。虽然已经研究了颅骨和白质各向异性电导率的影响,但对高度导电的脑脊液 (CSF) 区域的精确建模关注甚少。本研究探讨了 CSF 分割中的部分容积误差对 ESL 生物电模型的影响。当分割宽度与用于分割的磁共振 (MR) 图像分辨率相似的脑沟通道时,会出现这些误差,因为一些包含 CSF 和灰质的体素不能明确地分配给单个标签。这些问题在儿科人群中尤为普遍,使得 CSF 隔室的体素分割成为一个难题。鉴于 CSF 的高导电性,对该区域建模的误差可能导致生物电模型中的大误差。我们在这里引入了一种新方法,用于在构建患者特定的生物电模型时使用部分体积分数的估计值。在预计会出现部分容积误差的区域,我们使用分层灰质-CSF 模型来构建等效各向异性电导率张量。这允许我们在每个体素内考虑组织的非均质性。通过使用这种方法,我们能够减少生物电模型的误差,如与已知的高分辨率模型相比。此外,该模型还允许我们评估脑沟建模误差的影响,并量化作为脑沟宽度变化的函数的平均误差。我们的结果表明,CSF 区域的低估和高估都会导致生物电模型中的显著误差。虽然具有固定部分容积分数的模型能够减少这种误差,但当使用体素特定的部分容积估计值时,我们会看到最大的改进。我们的跨模型分析表明,脑沟误差与生物电模型的误差之间存在近似线性关系。考虑到准确分割狭窄脑沟的困难,这表明我们的方法可能能够将患者特定的生物电模型的准确性提高几个百分点,而只引入最小的额外计算要求。