Suppr超能文献

脊髓损伤患者运动准备过程中皮质脊髓功能的改变。

Altered corticospinal function during movement preparation in humans with spinal cord injury.

作者信息

Federico Paolo, Perez Monica A

机构信息

Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA.

出版信息

J Physiol. 2017 Jan 1;595(1):233-245. doi: 10.1113/JP272266. Epub 2016 Oct 7.

Abstract

KEY POINTS

In uninjured humans, transmission in the corticospinal pathway changes in a task-dependent manner during movement preparation. We investigated whether this ability is preserved in humans with incomplete chronic cervical spinal cord injury (SCI). Our results show that corticospinal excitability is altered in the preparatory phase of an upcoming movement when there is a need to suppress but not to execute rapid index finger voluntary contractions in individuals with SCI compared with controls. This is probably related to impaired transmission at a cortical and spinal level after SCI. Overall our findings indicate that deficits in corticospinal transmission in humans with chronic incomplete SCI are also present in the preparatory phase of upcoming movements.

ABSTRACT

Corticospinal output is modulated in a task-dependent manner during the preparatory phase of upcoming movements in humans. Whether this ability is preserved after spinal cord injury (SCI) is unknown. In this study, we examined motor evoked potentials elicited by cortical (MEPs) and subcortical (CMEPs) stimulation of corticospinal axons and short-interval intracortical inhibition in the first dorsal interosseous muscle in the preparatory phase of a reaction time task where individuals with chronic incomplete cervical SCI and age-matched controls needed to suppress (NOGO) or initiate (GO) ballistic index finger isometric voluntary contractions. Reaction times were prolonged in SCI participants compared with control subjects and stimulation was provided ∼90 ms prior to movement onset in each group. During NOGO trials, both MEPs and CMEPs remained unchanged compared to baseline in SCI participants but were suppressed in control subjects. Notably, during GO trials, MEPs increased to a similar extent in both groups but CMEPs increased only in controls. The magnitude of short-interval intracortical inhibition increased in controls but not in SCI subjects during NOGO trials and decreased in both groups in GO trials. These novel observations reveal that humans with incomplete cervical SCI have an altered ability to modulate corticospinal excitability during movement preparation when there is a need to suppress but not to execute upcoming rapid finger movements, which is probably related to impaired transmission at a cortical and spinal level. Thus, deficits in corticospinal transmission after human SCI extend to the preparatory phase of upcoming movements.

摘要

关键点

在未受伤的人类中,皮质脊髓通路的传导在运动准备过程中以任务依赖的方式发生变化。我们研究了这种能力在慢性颈脊髓损伤(SCI)不完全的人类中是否得以保留。我们的结果表明,与对照组相比,在SCI个体中,当需要抑制而非执行快速示指自主收缩时,即将进行的运动的准备阶段皮质脊髓兴奋性会发生改变。这可能与SCI后皮质和脊髓水平的传导受损有关。总体而言,我们的研究结果表明,慢性不完全SCI患者在即将进行的运动的准备阶段也存在皮质脊髓传导缺陷。

摘要

在人类即将进行的运动的准备阶段,皮质脊髓输出以任务依赖的方式受到调节。脊髓损伤(SCI)后这种能力是否得以保留尚不清楚。在本研究中,我们在反应时间任务的准备阶段,检测了慢性颈SCI不完全个体和年龄匹配的对照组在需要抑制(不执行)或启动(执行)示指等长快速自主收缩时,第一背侧骨间肌中皮质(MEP)和皮质下(CMEP)刺激皮质脊髓轴突诱发的运动诱发电位以及短间隔皮质内抑制。与对照组相比,SCI参与者的反应时间延长,且每组在运动开始前约90毫秒给予刺激。在不执行试验中,SCI参与者的MEP和CMEP与基线相比均保持不变,但在对照组中受到抑制。值得注意的是,在执行试验中,两组的MEP均有相似程度的增加,但CMEP仅在对照组中增加。在不执行试验中,对照组的短间隔皮质内抑制幅度增加,而SCI受试者则未增加,在执行试验中两组均降低。这些新的观察结果表明,慢性颈SCI不完全的人类在运动准备过程中,当需要抑制而非执行即将进行的快速手指运动时,调节皮质脊髓兴奋性的能力发生了改变,这可能与皮质和脊髓水平的传导受损有关。因此,人类SCI后皮质脊髓传导缺陷延伸至即将进行的运动的准备阶段。

相似文献

1
Altered corticospinal function during movement preparation in humans with spinal cord injury.
J Physiol. 2017 Jan 1;595(1):233-245. doi: 10.1113/JP272266. Epub 2016 Oct 7.
2
Impaired crossed facilitation of the corticospinal pathway after cervical spinal cord injury.
J Neurophysiol. 2012 May;107(10):2901-11. doi: 10.1152/jn.00850.2011. Epub 2012 Feb 22.
3
Effect of coil orientation on motor-evoked potentials in humans with tetraplegia.
J Physiol. 2018 Oct;596(20):4909-4921. doi: 10.1113/JP275798. Epub 2018 Sep 13.
4
Potentiating paired corticospinal-motoneuronal plasticity after spinal cord injury.
Brain Stimul. 2018 Sep-Oct;11(5):1083-1092. doi: 10.1016/j.brs.2018.05.006. Epub 2018 May 9.
5
Increased paired stimuli enhance corticospinal-motoneuronal plasticity in humans with spinal cord injury.
J Neurophysiol. 2023 Jun 1;129(6):1414-1422. doi: 10.1152/jn.00499.2022. Epub 2023 Feb 8.
6
Spike-timing-dependent plasticity in lower-limb motoneurons after human spinal cord injury.
J Neurophysiol. 2017 Oct 1;118(4):2171-2180. doi: 10.1152/jn.00111.2017. Epub 2017 May 3.
7
A novel cortical target to enhance hand motor output in humans with spinal cord injury.
Brain. 2017 Jun 1;140(6):1619-1632. doi: 10.1093/brain/awx102.
8
Cortical and reticular contributions to human precision and power grip.
J Physiol. 2017 Apr 15;595(8):2715-2730. doi: 10.1113/JP273679. Epub 2017 Feb 27.
9
Distinct Corticospinal and Reticulospinal Contributions to Voluntary Control of Elbow Flexor and Extensor Muscles in Humans with Tetraplegia.
J Neurosci. 2020 Nov 11;40(46):8831-8841. doi: 10.1523/JNEUROSCI.1107-20.2020. Epub 2020 Sep 3.
10
Changes in corticospinal excitability during the preparation phase of ballistic and ramp contractions.
J Physiol. 2021 Mar;599(5):1551-1566. doi: 10.1113/JP281093. Epub 2021 Feb 2.

引用本文的文献

1
Influence of sports on cortical excitability in patients with spinal cord injury: a TMS study.
Front Med Technol. 2024 May 15;6:1297552. doi: 10.3389/fmedt.2024.1297552. eCollection 2024.
2
Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee.
Clin Neurophysiol. 2023 Jun;150:131-175. doi: 10.1016/j.clinph.2023.03.010. Epub 2023 Mar 29.
3
Spinal Cord Injury and Loss of Cortical Inhibition.
Int J Mol Sci. 2022 May 17;23(10):5622. doi: 10.3390/ijms23105622.
4
Effector-Specific Characterization of Brain Dynamics in Manual vs. Oculomotor Go/NoGo Tasks.
Front Hum Neurosci. 2020 Dec 3;14:600667. doi: 10.3389/fnhum.2020.600667. eCollection 2020.
5
Acute intermittent hypoxia boosts spinal plasticity in humans with tetraplegia.
Exp Neurol. 2021 Jan;335:113483. doi: 10.1016/j.expneurol.2020.113483. Epub 2020 Sep 25.
6
Operant conditioning of the tibialis anterior motor evoked potential in people with and without chronic incomplete spinal cord injury.
J Neurophysiol. 2018 Dec 1;120(6):2745-2760. doi: 10.1152/jn.00362.2018. Epub 2018 Sep 12.
7
Stimulating the Healthy Brain to Investigate Neural Correlates of Motor Preparation: A Systematic Review.
Neural Plast. 2018 Feb 4;2018:5846096. doi: 10.1155/2018/5846096. eCollection 2018.
8
Cortical contributions to anticipatory postural adjustments in the trunk.
J Physiol. 2018 Apr 1;596(7):1295-1306. doi: 10.1113/JP275312. Epub 2018 Feb 25.
9
Corticospinal gating during action preparation and movement in the primate motor cortex.
J Neurophysiol. 2018 Apr 1;119(4):1538-1555. doi: 10.1152/jn.00639.2017. Epub 2018 Jan 3.
10
Modulation of corticospinal output in agonist and antagonist proximal arm muscles during motor preparation.
PLoS One. 2017 Nov 29;12(11):e0188801. doi: 10.1371/journal.pone.0188801. eCollection 2017.

本文引用的文献

1
Subcortical contribution to late TMS-induced I-waves in intact humans.
Front Integr Neurosci. 2015 May 27;9:38. doi: 10.3389/fnint.2015.00038. eCollection 2015.
2
Impaired Organization of Paired-Pulse TMS-Induced I-Waves After Human Spinal Cord Injury.
Cereb Cortex. 2016 May;26(5):2167-77. doi: 10.1093/cercor/bhv048. Epub 2015 Mar 25.
3
Prefrontal control over motor cortex cycles at beta frequency during movement inhibition.
Curr Biol. 2014 Dec 15;24(24):2940-5. doi: 10.1016/j.cub.2014.10.043. Epub 2014 Dec 4.
4
Motor unit firing rates during spasms in thenar muscles of spinal cord injured subjects.
Front Hum Neurosci. 2014 Nov 14;8:922. doi: 10.3389/fnhum.2014.00922. eCollection 2014.
5
Subcortical control of precision grip after human spinal cord injury.
J Neurosci. 2014 May 21;34(21):7341-50. doi: 10.1523/JNEUROSCI.0390-14.2014.
6
Inhibition and the right inferior frontal cortex: one decade on.
Trends Cogn Sci. 2014 Apr;18(4):177-85. doi: 10.1016/j.tics.2013.12.003. Epub 2014 Jan 15.
7
Differences between Han Chinese and Caucasians in transcranial magnetic stimulation parameters.
Exp Brain Res. 2014 Feb;232(2):545-53. doi: 10.1007/s00221-013-3763-2. Epub 2013 Nov 15.
8
Selective effects of baclofen on use-dependent modulation of GABAB inhibition after tetraplegia.
J Neurosci. 2013 Jul 31;33(31):12898-907. doi: 10.1523/JNEUROSCI.1552-13.2013.
9
Slowed down: response time deficits in well-recovered subjects with incomplete spinal cord injury.
Arch Phys Med Rehabil. 2013 Oct;94(10):2020-6. doi: 10.1016/j.apmr.2013.04.002. Epub 2013 Apr 18.
10
Motor recovery after spinal cord injury enhanced by strengthening corticospinal synaptic transmission.
Curr Biol. 2012 Dec 18;22(24):2355-61. doi: 10.1016/j.cub.2012.10.046. Epub 2012 Nov 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验