Du Han, Wang Lijuan
a University of Notre Dame.
Multivariate Behav Res. 2016 Sep-Oct;51(5):589-605. doi: 10.1080/00273171.2016.1191324. Epub 2016 Aug 2.
In conventional frequentist power analysis, one often uses an effect size estimate, treats it as if it were the true value, and ignores uncertainty in the effect size estimate for the analysis. The resulting sample sizes can vary dramatically depending on the chosen effect size value. To resolve the problem, we propose a hybrid Bayesian power analysis procedure that models uncertainty in the effect size estimates from a meta-analysis. We use observed effect sizes and prior distributions to obtain the posterior distribution of the effect size and model parameters. Then, we simulate effect sizes from the obtained posterior distribution. For each simulated effect size, we obtain a power value. With an estimated power distribution for a given sample size, we can estimate the probability of reaching a power level or higher and the expected power. With a range of planned sample sizes, we can generate a power assurance curve. Both the conventional frequentist and our Bayesian procedures were applied to conduct prospective power analyses for two meta-analysis examples (testing standardized mean differences in example 1 and Pearson's correlations in example 2). The advantages of our proposed procedure are demonstrated and discussed.
在传统的频率学派功效分析中,人们常常使用一个效应量估计值,将其当作真实值,并且在分析时忽略效应量估计值中的不确定性。由此得到的样本量会因所选的效应量值而有显著差异。为解决该问题,我们提出一种混合贝叶斯功效分析程序,该程序对来自荟萃分析的效应量估计值中的不确定性进行建模。我们使用观察到的效应量和先验分布来获得效应量和模型参数的后验分布。然后,我们从得到的后验分布中模拟效应量。对于每个模拟的效应量,我们获得一个功效值。利用给定样本量的估计功效分布,我们可以估计达到或超过某个功效水平的概率以及期望功效。对于一系列计划的样本量,我们可以生成一条功效保证曲线。传统的频率学派方法和我们的贝叶斯方法都被应用于对两个荟萃分析示例进行前瞻性功效分析(示例1中检验标准化均值差异,示例2中检验皮尔逊相关性)。我们所提出程序的优势得到了展示和讨论。