Rusconi Francesca, Ceriotti Paola, Miragoli Michele, Carullo Pierluigi, Salvarani Nicolò, Rocchetti Marcella, Di Pasquale Elisa, Rossi Stefano, Tessari Maddalena, Caprari Silvia, Cazade Magali, Kunderfranco Paolo, Chemin Jean, Bang Marie-Louise, Polticelli Fabio, Zaza Antonio, Faggian Giuseppe, Condorelli Gianluigi, Catalucci Daniele
From Humanitas Clinical and Research Center, Rozzano, Milan, Italy (F.R., P. Ceriotti, M.M., P. Carullo, N.S., E.D.P., P.K., M.-L.B., G.C., D.C.); Institute of Genetic and Biomedical Research UOS Milan National Research Council, Milan, Italy (F.R., P. Carullo, N.S., E.D.P., M.-L.B., D.C.); Department of Biotechnologies and Biosciences, University of Milan-Bicocca, Milan, Italy (M.R., A.Z.); Departments of Life Sciences (S.R.) and Clinical and Experimental Medicine (M.M.), University of Parma, Parma, Italy; University Hospital of Verona, Division of Cardiac Surgery, Verona, Italy (M.T., G.F.); Department of Sciences, University of Roma Tre, Rome, Italy (S.C., F.P.); University of Montpellier, CNRS UMR 5203, INSERM, Department of Neuroscience, Institute for Functional Genomics, LabEx Ion Channel Science and Therapeutics, Montpellier, France (M.C., J.C.); and National Institute of Nuclear Physics, Rome Tre Section, Rome, Italy (F.P.).
Circulation. 2016 Aug 16;134(7):534-46. doi: 10.1161/CIRCULATIONAHA.116.021347. Epub 2016 Aug 2.
L-type calcium channels (LTCCs) play important roles in regulating cardiomyocyte physiology, which is governed by appropriate LTCC trafficking to and density at the cell surface. Factors influencing the expression, half-life, subcellular trafficking, and gating of LTCCs are therefore critically involved in conditions of cardiac physiology and disease.
Yeast 2-hybrid screenings, biochemical and molecular evaluations, protein interaction assays, fluorescence microscopy, structural molecular modeling, and functional studies were used to investigate the molecular mechanisms through which the LTCC Cavβ2 chaperone regulates channel density at the plasma membrane.
On the basis of our previous results, we found a direct linear correlation between the total amount of the LTCC pore-forming Cavα1.2 and the Akt-dependent phosphorylation status of Cavβ2 both in a mouse model of diabetic cardiac disease and in 6 diabetic and 7 nondiabetic cardiomyopathy patients with aortic stenosis undergoing aortic valve replacement. Mechanistically, we demonstrate that a conformational change in Cavβ2 triggered by Akt phosphorylation increases LTCC density at the cardiac plasma membrane, and thus the inward calcium current, through a complex pathway involving reduction of Cavα1.2 retrograde trafficking and protein degradation through the prevention of dynamin-mediated LTCC endocytosis; promotion of Cavα1.2 anterograde trafficking by blocking Kir/Gem-dependent sequestration of Cavβ2, thus facilitating the chaperoning of Cavα1.2; and promotion of Cavα1.2 transcription by the prevention of Kir/Gem-mediated shuttling of Cavβ2 to the nucleus, where it limits the transcription of Cavα1.2 through recruitment of the heterochromatin protein 1γ epigenetic repressor to the Cacna1c promoter. On the basis of this mechanism, we developed a novel mimetic peptide that, through targeting of Cavβ2, corrects LTCC life-cycle alterations, facilitating the proper function of cardiac cells. Delivery of mimetic peptide into a mouse model of diabetic cardiac disease associated with LTCC abnormalities restored impaired calcium balance and recovered cardiac function.
We have uncovered novel mechanisms modulating LTCC trafficking and life cycle and provide proof of concept for the use of Cavβ2 mimetic peptide as a novel therapeutic tool for the improvement of cardiac conditions correlated with alterations in LTCC levels and function.
L型钙通道(LTCCs)在调节心肌细胞生理过程中发挥重要作用,而这一过程受LTCC向细胞表面的转运及其在细胞表面的密度所调控。因此,影响LTCCs表达、半衰期、亚细胞转运及门控的因素在心脏生理和疾病状态中起着关键作用。
采用酵母双杂交筛选、生化和分子评估、蛋白质相互作用分析、荧光显微镜检查、结构分子建模及功能研究,以探究LTCC伴侣蛋白Cavβ2调节质膜上通道密度的分子机制。
基于我们之前的研究结果,我们发现在糖尿病性心脏病小鼠模型以及6例糖尿病和7例非糖尿病的主动脉狭窄心肌病患者(均接受主动脉瓣置换术)中,LTCC孔形成亚基Cavα1.2的总量与Cavβ2的Akt依赖性磷酸化状态之间存在直接线性关系。从机制上讲,我们证明Akt磷酸化引发的Cavβ2构象变化通过一条复杂途径增加了心脏质膜上的LTCC密度,进而增加内向钙电流,该途径包括:通过防止发动蛋白介导的LTCC内吞作用减少Cavα1.2的逆向转运和蛋白质降解;通过阻断Kir/Gem依赖性的Cavβ2隔离促进Cavα1.2的顺向转运,从而促进Cavα1.2的伴侣作用;通过防止Kir/Gem介导的Cavβ2穿梭至细胞核来促进Cavα1.2转录,在细胞核中它通过招募异染色质蛋白1γ表观遗传抑制因子至Cacna1c启动子来限制Cavα1.2的转录。基于这一机制,我们开发了一种新型模拟肽,通过靶向Cavβ2来纠正LTCC生命周期改变,促进心脏细胞的正常功能。将模拟肽递送至伴有LTCC异常的糖尿病性心脏病小鼠模型中,可恢复受损的钙平衡并恢复心脏功能。
我们揭示了调节LTCC转运和生命周期的新机制,并为使用Cavβ2模拟肽作为改善与LTCC水平和功能改变相关心脏疾病的新型治疗工具提供了概念验证。