Suppr超能文献

用于心脏靶向的嵌入磷酸钙纳米颗粒的可吸入微粒:制剂实验设计

Inhalable Microparticles Embedding Calcium Phosphate Nanoparticles for Heart Targeting: The Formulation Experimental Design.

作者信息

Quarta Eride, Sonvico Fabio, Bettini Ruggero, De Luca Claudio, Dotti Alessandro, Catalucci Daniele, Iafisco Michele, Degli Esposti Lorenzo, Colombo Gaia, Trevisi Giovanna, Rekkas Dimitrios M, Rossi Alessandra, Wong Tin Wui, Buttini Francesca, Colombo Paolo

机构信息

Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.

PlumeStars Srl., c/o Food & Drug Department, Parco Area delle Scienze 27A, 43124 Parma, Italy.

出版信息

Pharmaceutics. 2021 Nov 1;13(11):1825. doi: 10.3390/pharmaceutics13111825.

Abstract

Inhalation of Calcium Phosphate nanoparticles (CaPs) has recently unmasked the potential of this nanomedicine for a respiratory lung-to-heart drug delivery targeting the myocardial cells. In this work, we investigated the development of a novel highly respirable dry powder embedding crystalline CaPs. Mannitol was selected as water soluble matrix excipient for constructing respirable dry microparticles by spray drying technique. A Quality by Design approach was applied for understanding the effect of the feed composition and spraying feed rate on typical quality attributes of inhalation powders. The in vitro aerodynamic behaviour of powders was evaluated using a medium resistance device. The inner structure and morphology of generated microparticles were also studied. The 1:4 ratio of CaPs/mannitol led to the generation of hollow microparticles, with the best aerodynamic performance. After microparticle dissolution, the released nanoparticles kept their original size.

摘要

吸入磷酸钙纳米颗粒(CaPs)最近揭示了这种纳米药物在针对心肌细胞的呼吸性肺到心脏药物递送方面的潜力。在这项工作中,我们研究了一种新型的高度可吸入的包埋结晶CaPs的干粉的开发。选择甘露醇作为水溶性基质赋形剂,通过喷雾干燥技术制备可吸入的干燥微粒。采用质量源于设计的方法来理解进料组成和喷雾进料速率对吸入粉末典型质量属性的影响。使用中等阻力装置评估粉末的体外空气动力学行为。还研究了生成的微粒的内部结构和形态。CaPs/甘露醇的1:4比例导致生成具有最佳空气动力学性能的中空微粒。微粒溶解后,释放的纳米颗粒保持其原始尺寸。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c620/8617656/f34ed50b05de/pharmaceutics-13-01825-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验