Kaczor Agnieszka A, Guixà-González Ramon, Carrió Pau, Poso Antti, Dove Stefan, Pastor Manuel, Selent Jana
School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland phone: +48815357365; fax: +48815357366.
Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Lab, Faculty of Pharmacy with Division for Medical Analytics, 4A Chodźki St., PL-20059 Lublin, Poland.
Mol Inform. 2015 Apr;34(4):246-55. doi: 10.1002/minf.201400088. Epub 2015 Mar 27.
In order to apply structure-based drug design techniques to GPCR complexes, it is essential to model their 3D structure. For this purpose, a multi-component protocol was derived based on protein-protein docking which generates populations of dimers compatible with membrane integration, considering all reasonable interfaces. At the next stage, we applied a scoring procedure based on up to eleven different parameters including shape or electrostatics complementarity. Two methods of consensus scoring were performed: (i) average scores of 100 best scored dimers with respect to each interface, and (ii) frequencies of interfaces among 100 best scored dimers. In general, our multi-component protocol gives correct indications for dimer interfaces that have been observed in X-ray crystal structures of GPCR dimers (opsin dimer, chemokine CXCR4 and CCR5 dimers, κ opioid receptor dimer, β1 adrenergic receptor dimer and smoothened receptor dimer) but also suggests alternative dimerization interfaces. Interestingly, at times these alternative interfaces are scored higher than the experimentally observed ones suggesting them to be also relevant in the life cycle of studied GPCR dimers. Further results indicate that GPCR dimer and higher-order oligomer formation may involve transmembrane helices (TMs) TM1-TM2-TM7, TM3-TM4-TM5 or TM4-TM5-TM6 but not TM1-TM2-TM3 or TM2-TM3-TM4 which is in general agreement with available experimental and computational data.
为了将基于结构的药物设计技术应用于GPCR复合物,对其三维结构进行建模至关重要。为此,基于蛋白质-蛋白质对接推导了一种多组分方案,该方案考虑所有合理界面,生成与膜整合兼容的二聚体群体。在下一阶段,我们应用了一种基于多达11种不同参数的评分程序,包括形状或静电互补性。进行了两种共识评分方法:(i)针对每个界面的100个评分最高的二聚体的平均分数,以及(ii)100个评分最高的二聚体中界面的频率。总体而言,我们的多组分方案为在GPCR二聚体(视蛋白二聚体、趋化因子CXCR4和CCR5二聚体、κ阿片受体二聚体、β1肾上腺素能受体二聚体和平滑素受体二聚体)的X射线晶体结构中观察到的二聚体界面给出了正确指示,但也提出了其他二聚化界面。有趣的是,有时这些替代界面的评分高于实验观察到的界面,表明它们在研究的GPCR二聚体的生命周期中也相关。进一步的结果表明,GPCR二聚体和高阶寡聚体的形成可能涉及跨膜螺旋(TMs)TM1-TM2-TM7、TM3-TM4-TM5或TM4-TM5-TM6,但不涉及TM1-TM2-TM3或TM2-TM3-TM4,这与现有的实验和计算数据总体一致。