Suppr超能文献

利用层次虚拟筛选来对抗 HIV-1 蛋白酶的耐药性。

Using Hierarchical Virtual Screening To Combat Drug Resistance of the HIV-1 Protease.

机构信息

†Department of Chemistry and Biochemistry University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0359, United States.

‡College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.

出版信息

J Chem Inf Model. 2015 Jul 27;55(7):1400-12. doi: 10.1021/acs.jcim.5b00056. Epub 2015 Jun 16.

Abstract

Human immunodeficiency virus (HIV) protease inhibitors (PIs) are important components of highly active anti-retroviral therapy (HAART) that block the catalytic site of HIV protease, thus preventing maturation of the HIV virion. However, with two decades of PI prescriptions in clinical practice, drug-resistant HIV mutants have now been found for all of the PI drugs. Therefore, the continuous development of new PI drugs is crucial both to combat the existing drug-resistant HIV strains and to provide treatments for future patients. Here we purpose an HIV PI drug design strategy to select candidate PIs with binding energy distributions dominated by interactions with conserved protease residues in both wild-type and various drug-resistant mutants. On the basis of this strategy, we have constructed a virtual screening pipeline including combinatorial library construction, combinatorial docking, MM/GBSA-based rescoring, and reranking on the basis of the binding energy distribution. We have tested our strategy on lopinavir by modifying its two functional groups. From an initial 751 689 candidate molecules, 18 candidate inhibitors were selected using the pipeline for experimental validation. IC50 measurements and drug resistance predictions successfully identified two ligands with both HIV protease inhibitor activity and an improved drug resistance profile on 2382 HIV mutants. This study provides a proof of concept for the integration of MM/GBSA energy analysis and drug resistance information at the stage of virtual screening and sheds light on future HIV drug design and the use of virtual screening to combat drug resistance.

摘要

人类免疫缺陷病毒 (HIV) 蛋白酶抑制剂 (PI) 是高效抗逆转录病毒疗法 (HAART) 的重要组成部分,可阻断 HIV 蛋白酶的催化位点,从而阻止 HIV 病毒成熟。然而,经过二十年的 PI 临床应用,目前已发现所有 PI 药物均存在耐药性 HIV 突变体。因此,不断开发新的 PI 药物不仅对于对抗现有耐药性 HIV 株至关重要,而且对于未来的患者治疗也至关重要。在这里,我们提出了一种 HIV PI 药物设计策略,用于选择候选 PI,其结合能分布主要由与野生型和各种耐药突变体中保守蛋白酶残基的相互作用决定。在此策略的基础上,我们构建了一个虚拟筛选管道,包括组合库构建、组合对接、基于 MM/GBSA 的重评分和基于结合能分布的重新排序。我们通过修饰洛匹那韦的两个功能基团对其进行了测试。从最初的 751689 个候选分子中,我们使用该管道选择了 18 个候选抑制剂进行实验验证。IC50 测量和耐药性预测成功鉴定出两种具有 HIV 蛋白酶抑制剂活性和改善耐药性特征的配体,对 2382 种 HIV 突变体具有作用。这项研究为在虚拟筛选阶段整合 MM/GBSA 能量分析和耐药性信息提供了概念验证,并为未来的 HIV 药物设计和利用虚拟筛选来对抗耐药性提供了思路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验