Suppr超能文献

POMGnT1茎区的碳水化合物结合结构域调节α- dystroglycan的O-甘露糖基化位点。

Carbohydrate-binding domain of the POMGnT1 stem region modulates O-mannosylation sites of α-dystroglycan.

作者信息

Kuwabara Naoyuki, Manya Hiroshi, Yamada Takeyuki, Tateno Hiroaki, Kanagawa Motoi, Kobayashi Kazuhiro, Akasaka-Manya Keiko, Hirose Yuriko, Mizuno Mamoru, Ikeguchi Mitsunori, Toda Tatsushi, Hirabayashi Jun, Senda Toshiya, Endo Tamao, Kato Ryuichi

机构信息

Photon Factory, Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan;

Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan;

出版信息

Proc Natl Acad Sci U S A. 2016 Aug 16;113(33):9280-5. doi: 10.1073/pnas.1525545113. Epub 2016 Aug 4.

Abstract

The dystrophin glycoprotein complex, which connects the cell membrane to the basement membrane, is essential for a variety of biological events, including maintenance of muscle integrity. An O-mannose-type GalNAc-β1,3-GlcNAc-β1,4-(phosphate-6)-Man structure of α-dystroglycan (α-DG), a subunit of the complex that is anchored to the cell membrane, interacts directly with laminin in the basement membrane. Reduced glycosylation of α-DG is linked to some types of inherited muscular dystrophy; consistent with this relationship, many disease-related mutations have been detected in genes involved in O-mannosyl glycan synthesis. Defects in protein O-linked mannose β1,2-N-acetylglucosaminyltransferase 1 (POMGnT1), a glycosyltransferase that participates in the formation of GlcNAc-β1,2-Man glycan, are causally related to muscle-eye-brain disease (MEB), a congenital muscular dystrophy, although the role of POMGnT1 in postphosphoryl modification of GalNAc-β1,3-GlcNAc-β1,4-(phosphate-6)-Man glycan remains elusive. Our crystal structures of POMGnT1 agreed with our previous results showing that the catalytic domain recognizes substrate O-mannosylated proteins via hydrophobic interactions with little sequence specificity. Unexpectedly, we found that the stem domain recognizes the β-linked GlcNAc of O-mannosyl glycan, an enzymatic product of POMGnT1. This interaction may recruit POMGnT1 to a specific site of α-DG to promote GlcNAc-β1,2-Man clustering and also may recruit other enzymes that interact with POMGnT1, e.g., fukutin, which is required for further modification of the GalNAc-β1,3-GlcNAc-β1,4-(phosphate-6)-Man glycan. On the basis of our findings, we propose a mechanism for the deficiency in postphosphoryl modification of the glycan observed in POMGnT1-KO mice and MEB patients.

摘要

肌营养不良蛋白糖蛋白复合物将细胞膜与基底膜连接起来,对包括维持肌肉完整性在内的多种生物学事件至关重要。α-肌营养不良聚糖(α-DG)是该复合物的一个亚基,锚定在细胞膜上,其O-甘露糖型GalNAc-β1,3-GlcNAc-β1,4-(磷酸-6)-甘露糖结构与基底膜中的层粘连蛋白直接相互作用。α-DG糖基化减少与某些类型的遗传性肌肉营养不良有关;与此关系一致的是,在参与O-甘露糖聚糖合成的基因中检测到了许多与疾病相关的突变。蛋白O-连接甘露糖β1,2-N-乙酰葡糖胺基转移酶1(POMGnT1)是一种参与GlcNAc-β1,2-甘露糖聚糖形成的糖基转移酶,其缺陷与先天性肌肉营养不良——肌肉-眼-脑疾病(MEB)有因果关系,尽管POMGnT1在GalNAc-β1,3-GlcNAc-β1,4-(磷酸-6)-甘露糖聚糖的磷酸化后修饰中的作用仍不清楚。我们得到的POMGnT1晶体结构与我们之前的结果一致,即催化结构域通过几乎没有序列特异性的疏水相互作用识别底物O-甘露糖基化蛋白。出乎意料的是,我们发现茎结构域识别O-甘露糖聚糖的β-连接的GlcNAc,这是POMGnT1的一种酶促产物。这种相互作用可能会将POMGnT1招募到α-DG的特定位点,以促进GlcNAc-β1,2-甘露糖的聚集,也可能会招募与POMGnT1相互作用的其他酶,例如,对于GalNAc-β1,3-GlcNAc-β1,4-(磷酸-6)-甘露糖聚糖的进一步修饰所必需的福库糖蛋白。基于我们的发现,我们提出了一种机制来解释在POMGnT1基因敲除小鼠和MEB患者中观察到的聚糖磷酸化后修饰缺陷。

相似文献

1
Carbohydrate-binding domain of the POMGnT1 stem region modulates O-mannosylation sites of α-dystroglycan.
Proc Natl Acad Sci U S A. 2016 Aug 16;113(33):9280-5. doi: 10.1073/pnas.1525545113. Epub 2016 Aug 4.
2
Glycomic analyses of mouse models of congenital muscular dystrophy.
J Biol Chem. 2011 Jun 17;286(24):21180-90. doi: 10.1074/jbc.M110.203281. Epub 2011 Apr 1.
3
FAM3B/PANDER-Like Carbohydrate-Binding Domain in a Glycosyltransferase, POMGNT1.
Methods Mol Biol. 2020;2132:609-619. doi: 10.1007/978-1-0716-0430-4_52.
4
Glycosyltransferase POMGNT1 deficiency strengthens N-cadherin-mediated cell-cell adhesion.
J Biol Chem. 2021 Jan-Jun;296:100433. doi: 10.1016/j.jbc.2021.100433. Epub 2021 Feb 18.
5
[Recent Advances in α-dystroglycanopathy].
Brain Nerve. 2011 Nov;63(11):1189-95.
6
Deficiency of alpha-dystroglycan in muscle-eye-brain disease.
Biochem Biophys Res Commun. 2002 Mar 15;291(5):1283-6. doi: 10.1006/bbrc.2002.6608.
8
Glycosylation with ribitol-phosphate in mammals: New insights into the O-mannosyl glycan.
Biochim Biophys Acta Gen Subj. 2017 Oct;1861(10):2462-2472. doi: 10.1016/j.bbagen.2017.06.024. Epub 2017 Jul 12.
9
Molecular interaction between fukutin and POMGnT1 in the glycosylation pathway of alpha-dystroglycan.
Biochem Biophys Res Commun. 2006 Dec 1;350(4):935-41. doi: 10.1016/j.bbrc.2006.09.129. Epub 2006 Oct 2.

引用本文的文献

2
Variable Ophthalmologic Phenotypes Associated with Biallelic Loss-of-Function Variants in .
Int J Mol Sci. 2025 Apr 1;26(7):3278. doi: 10.3390/ijms26073278.
3
Malformations of Core M3 on α-Dystroglycan Are the Leading Cause of Dystroglycanopathies.
J Mol Neurosci. 2025 Feb 25;75(1):28. doi: 10.1007/s12031-025-02320-z.
4
Self-regulation of MGAT4A and MGAT4B activity toward glycoproteins through interaction of lectin domain with their own -glycans.
iScience. 2024 Sep 28;27(11):111066. doi: 10.1016/j.isci.2024.111066. eCollection 2024 Nov 15.
5
Restoring protein glycosylation with GlycoShape.
Nat Methods. 2024 Nov;21(11):2117-2127. doi: 10.1038/s41592-024-02464-7. Epub 2024 Oct 14.
6
Saturation mutagenesis-reinforced functional assays for disease-related genes.
Cell. 2024 Nov 14;187(23):6707-6724.e22. doi: 10.1016/j.cell.2024.08.047. Epub 2024 Sep 25.
7
Genetic Deficiencies of Hyaluronan Degradation.
Cells. 2024 Jul 16;13(14):1203. doi: 10.3390/cells13141203.
8
Identification of a short, single site matriglycan that maintains neuromuscular function in the mouse.
bioRxiv. 2023 Dec 21:2023.12.20.572361. doi: 10.1101/2023.12.20.572361.
10
Protein O-mannosylation: one sugar, several pathways, many functions.
Glycobiology. 2023 Dec 25;33(11):911-926. doi: 10.1093/glycob/cwad067.

本文引用的文献

1
Identification of a Post-translational Modification with Ribitol-Phosphate and Its Defect in Muscular Dystrophy.
Cell Rep. 2016 Mar 8;14(9):2209-2223. doi: 10.1016/j.celrep.2016.02.017. Epub 2016 Feb 25.
2
Molecular logic of neuronal self-recognition through protocadherin domain interactions.
Cell. 2015 Oct 22;163(3):629-42. doi: 10.1016/j.cell.2015.09.026. Epub 2015 Oct 17.
5
Glycobiology of α-dystroglycan and muscular dystrophy.
J Biochem. 2015 Jan;157(1):1-12. doi: 10.1093/jb/mvu066. Epub 2014 Nov 7.
7
The carbohydrate-active enzymes database (CAZy) in 2013.
Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5. doi: 10.1093/nar/gkt1178. Epub 2013 Nov 21.
8
LARGE glycans on dystroglycan function as a tunable matrix scaffold to prevent dystrophy.
Nature. 2013 Nov 7;503(7474):136-40. doi: 10.1038/nature12605. Epub 2013 Oct 16.
9
Mining the O-mannose glycoproteome reveals cadherins as major O-mannosylated glycoproteins.
Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):21018-23. doi: 10.1073/pnas.1313446110. Epub 2013 Oct 7.
10
SGK196 is a glycosylation-specific O-mannose kinase required for dystroglycan function.
Science. 2013 Aug 23;341(6148):896-9. doi: 10.1126/science.1239951. Epub 2013 Aug 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验