Mao Guanzhong, Chen Tien-Hao, Srivastava Abhishek S, Kosek David, Biswas Pradip K, Gopalan Venkat, Kirsebom Leif A
Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden.
Department of Chemistry & Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, Ohio, 43210, United States of America.
PLoS One. 2016 Aug 5;11(8):e0160246. doi: 10.1371/journal.pone.0160246. eCollection 2016.
Two broad classes of RNase P trim the 5' leader of precursor tRNAs (pre-tRNAs): ribonucleoprotein (RNP)- and proteinaceous (PRORP)-variants. These two RNase P types, which use different scaffolds for catalysis, reflect independent evolutionary paths. While the catalytic RNA-based RNP form is present in all three domains of life, the PRORP family is restricted to eukaryotes. To obtain insights on substrate recognition by PRORPs, we examined the 5' processing ability of recombinant Arabidopsis thaliana PRORP1 (AtPRORP1) using a panel of pre-tRNASer variants and model hairpin-loop derivatives (pATSer type) that consist of the acceptor-T-stem stack and the T-/D-loop. Our data indicate the importance of the identity of N-1 (the residue immediately 5' to the cleavage site) and the N-1:N+73 base pair for cleavage rate and site selection of pre-tRNASer and pATSer. The nucleobase preferences that we observed mirror the frequency of occurrence in the complete suite of organellar pre-tRNAs in eight algae/plants that we analyzed. The importance of the T-/D-loop in pre-tRNASer for tight binding to AtPRORP1 is indicated by the 200-fold weaker binding of pATSer compared to pre-tRNASer, while the essentiality of the T-loop for cleavage is reflected by the near-complete loss of activity when a GAAA-tetraloop replaced the T-loop in pATSer. Substituting the 2'-OH at N-1 with 2'-H also resulted in no detectable cleavage, hinting at the possible role of this 2'-OH in coordinating Mg2+ ions critical for catalysis. Collectively, our results indicate similarities but also key differences in substrate recognition by the bacterial RNase P RNP and AtPRORP1: while both forms exploit the acceptor-T-stem stack and the elbow region in the pre-tRNA, the RNP form appears to require more recognition determinants for cleavage-site selection.
核糖核酸酶P(RNase P)主要有两大类负责修剪前体tRNA(pre-tRNA)的5'前导序列:核糖核蛋白(RNP)变体和蛋白质(PRORP)变体。这两种类型的RNase P使用不同的催化支架,反映了独立的进化路径。基于催化RNA的RNP形式存在于生命的所有三个域中,而PRORP家族仅限于真核生物。为了深入了解PRORP对底物的识别机制,我们使用一组pre-tRNASer变体和由受体-T-茎堆叠以及T-/D-环组成的模型发夹环衍生物(pATSer类型),检测了重组拟南芥PRORP1(AtPRORP1)的5'加工能力。我们的数据表明,N-1(切割位点紧邻5'端的残基)的身份以及N-1:N+73碱基对对于pre-tRNASer和pATSer的切割速率和位点选择至关重要。我们观察到的核碱基偏好反映了我们分析的八种藻类/植物中完整细胞器pre-tRNA组中的出现频率。与pre-tRNASer相比,pATSer的结合能力弱200倍,这表明pre-tRNASer中的T-/D-环对于与AtPRORP1紧密结合很重要,而当pATSer中的T-环被GAAA四环取代时,活性几乎完全丧失,这反映了T-环对于切割的必要性。用2'-H取代N-1处的2'-OH也导致无法检测到切割,这暗示了该2'-OH在协调对催化至关重要的Mg2+离子方面可能发挥的作用。总体而言,我们的结果表明细菌RNase P RNP和AtPRORP1在底物识别上既有相似之处也有关键差异:虽然两种形式都利用pre-tRNA中的受体-T-茎堆叠和肘部区域,但RNP形式似乎需要更多的识别决定因素来选择切割位点。