Walczyk Dennis, Gößringer Markus, Rossmanith Walter, Zatsepin Timofei S, Oretskaya Tatiana S, Hartmann Roland K
Institute of Pharmaceutical Chemistry, Philipps-University Marburg, 35037 Marburg, Germany.
Center for Anatomy & Cell Biology, Medical University of Vienna, 1090 Vienna, Austria.
J Mol Biol. 2016 Dec 4;428(24 Pt B):4917-4928. doi: 10.1016/j.jmb.2016.10.020. Epub 2016 Oct 18.
Ribonuclease P (RNase P) is the enzyme that endonucleolytically removes 5'-precursor sequences from tRNA transcripts in all domains of life. RNase P activities are either ribonucleoprotein (RNP) or protein-only RNase P (PRORP) enzymes, raising the question about the mechanistic strategies utilized by these architecturally different enzyme classes to catalyze the same type of reaction. Here, we analyzed the kinetics and cleavage-site selection by PRORP3 from Arabidopsis thaliana (AtPRORP3) using precursor tRNAs (pre-tRNAs) with individual modifications at the canonical cleavage site, with either Rp- or Sp-phosphorothioate, or 2'-deoxy, 2'-fluoro, 2'-amino, or 2'-O-methyl substitutions. We observed a small but robust rescue effect of Sp-phosphorothioate-modified pre-tRNA in the presence of thiophilic Cd ions, consistent with metal-ion coordination to the (pro-)Sp-oxygen during catalysis. Sp-phosphorothioate, 2'-deoxy, 2'-amino, and 2'-O-methyl modification redirected the cleavage mainly to the next unmodified phosphodiester in the 5'-direction. Our findings are in line with the 2'-OH substituent at nucleotide -1 being involved in an H-bonding acceptor function. In contrast to bacterial RNase P, AtPRORP3 was found to be able to utilize the canonical and upstream cleavage site with similar efficiency (corresponding to reduced cleavage fidelity), and the two cleavage pathways appear less interdependent than in the bacterial RNA-based system.
核糖核酸酶P(RNase P)是一种内切核酸酶,可从所有生命域的tRNA转录本中内切去除5'-前体序列。RNase P的活性形式为核糖核蛋白(RNP)或仅含蛋白质的RNase P(PRORP)酶,这就引发了一个问题,即这些结构不同的酶类在催化同一类型反应时所采用的机制策略是什么。在这里,我们使用在标准切割位点具有单个修饰的前体tRNA(pre-tRNA),即带有Rp-或Sp-硫代磷酸酯,或2'-脱氧、2'-氟、2'-氨基或2'-O-甲基取代的pre-tRNA,分析了拟南芥PRORP3(AtPRORP3)的动力学和切割位点选择。我们观察到在亲硫性镉离子存在下,Sp-硫代磷酸酯修饰的pre-tRNA有一个小但显著的拯救效应,这与催化过程中金属离子与(原)Sp-氧的配位一致。Sp-硫代磷酸酯、2'-脱氧、2'-氨基和2'-O-甲基修饰主要将切割重定向到5'-方向的下一个未修饰的磷酸二酯键。我们的发现与核苷酸-1处的2'-OH取代基参与氢键受体功能一致。与细菌RNase P不同,AtPRORP3能够以相似的效率利用标准切割位点和上游切割位点(对应于切割保真度降低),并且这两条切割途径的相互依赖性似乎比基于细菌RNA的系统中要小。