Hung C-L, González-Tudela Alejandro, Cirac J Ignacio, Kimble H J
Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907; Purdue Quantum Center, Purdue University, West Lafayette, IN 47907;
Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany;
Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):E4946-55. doi: 10.1073/pnas.1603777113. Epub 2016 Aug 5.
We present a platform for the simulation of quantum magnetism with full control of interactions between pairs of spins at arbitrary distances in 1D and 2D lattices. In our scheme, two internal atomic states represent a pseudospin for atoms trapped within a photonic crystal waveguide (PCW). With the atomic transition frequency aligned inside a band gap of the PCW, virtual photons mediate coherent spin-spin interactions between lattice sites. To obtain full control of interaction coefficients at arbitrary atom-atom separations, ground-state energy shifts are introduced as a function of distance across the PCW. In conjunction with auxiliary pump fields, spin-exchange versus atom-atom separation can be engineered with arbitrary magnitude and phase, and arranged to introduce nontrivial Berry phases in the spin lattice, thus opening new avenues for realizing topological spin models. We illustrate the broad applicability of our scheme by explicit construction for several well-known spin models.
我们提出了一个用于模拟量子磁性的平台,该平台能够完全控制一维和二维晶格中任意距离的自旋对之间的相互作用。在我们的方案中,两个内部原子态代表了捕获在光子晶体波导(PCW)内的原子的一个赝自旋。由于原子跃迁频率与PCW的带隙内部对齐,虚拟光子介导了晶格位点之间的相干自旋-自旋相互作用。为了在任意原子-原子间距下完全控制相互作用系数,引入了作为穿过PCW距离函数的基态能量偏移。结合辅助泵浦场,可以设计出自旋交换与原子-原子间距之间具有任意大小和相位的关系,并安排在自旋晶格中引入非平凡的贝里相位,从而为实现拓扑自旋模型开辟新途径。我们通过对几个著名自旋模型的显式构造来说明我们方案的广泛适用性。