Suppr超能文献

原子云阵列中的可编程相互作用和突发几何形状。

Programmable interactions and emergent geometry in an array of atom clouds.

机构信息

Department of Physics, Stanford University, Stanford, CA, USA.

SLAC National Accelerator Laboratory, Menlo Park, CA, USA.

出版信息

Nature. 2021 Dec;600(7890):630-635. doi: 10.1038/s41586-021-04156-0. Epub 2021 Dec 22.

Abstract

Interactions govern the flow of information and the formation of correlations between constituents of many-body quantum systems, dictating phases of matter found in nature and forms of entanglement generated in the laboratory. Typical interactions decay with distance and thus produce a network of connectivity governed by geometry-such as the crystalline structure of a material or the trapping sites of atoms in a quantum simulator. However, many envisioned applications in quantum simulation and computation require more complex coupling graphs including non-local interactions, which feature in models of information scrambling in black holes and mappings of hard optimization problems onto frustrated classical magnets. Here we describe the realization of programmable non-local interactions in an array of atomic ensembles within an optical cavity, in which photons carry information between atomic spins. By programming the distance dependence of the interactions, we access effective geometries for which the dimensionality, topology and metric are entirely distinct from the physical geometry of the array. As examples, we engineer an antiferromagnetic triangular ladder, a Möbius strip with sign-changing interactions and a treelike geometry inspired by concepts of quantum gravity. The tree graph constitutes a toy model of holographic duality, in which the quantum system lies on the boundary of a higher-dimensional geometry that emerges from measured correlations. Our work provides broader prospects for simulating frustrated magnets and topological phases, investigating quantum optimization paradigms and engineering entangled resource states for sensing and computation.

摘要

相互作用控制着许多体量子系统成分之间的信息流动和相关性的形成,决定了自然界中存在的物质相和实验室中产生的纠缠形式。典型的相互作用随距离衰减,因此产生了由几何形状控制的连通性网络,例如材料的晶体结构或量子模拟器中的原子捕获位置。然而,许多在量子模拟和计算中的预期应用需要更复杂的耦合图,包括非局部相互作用,这些相互作用在黑洞中信息混乱的模型和将硬优化问题映射到受挫的经典磁体中有所体现。在这里,我们描述了在光学腔中原子系综阵列中可编程非局部相互作用的实现,其中光子在原子自旋之间传递信息。通过编程相互作用的距离依赖性,我们可以访问有效几何形状,其维度、拓扑和度量与阵列的物理几何形状完全不同。作为示例,我们设计了一个反铁磁三角梯、一个具有符号变化相互作用的莫比乌斯带和一个受量子引力概念启发的树状几何图形。树图构成了全息对偶性的玩具模型,其中量子系统位于从测量相关性中出现的更高维几何形状的边界上。我们的工作为模拟受挫磁体和拓扑相、研究量子优化范例以及为传感和计算工程纠缠资源状态提供了更广阔的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验