Suppr超能文献

光子晶体波导能带边缘周围的原子-原子相互作用。

Atom-atom interactions around the band edge of a photonic crystal waveguide.

作者信息

Hood Jonathan D, Goban Akihisa, Asenjo-Garcia Ana, Lu Mingwu, Yu Su-Peng, Chang Darrick E, Kimble H J

机构信息

Norman Bridge Laboratory of Physics MC12-33, California Institute of Technology, Pasadena, CA 91125; Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125;

Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Barcelona, Spain.

出版信息

Proc Natl Acad Sci U S A. 2016 Sep 20;113(38):10507-12. doi: 10.1073/pnas.1603788113. Epub 2016 Aug 31.

Abstract

Tailoring the interactions between quantum emitters and single photons constitutes one of the cornerstones of quantum optics. Coupling a quantum emitter to the band edge of a photonic crystal waveguide (PCW) provides a unique platform for tuning these interactions. In particular, the cross-over from propagating fields [Formula: see text] outside the bandgap to localized fields [Formula: see text] within the bandgap should be accompanied by a transition from largely dissipative atom-atom interactions to a regime where dispersive atom-atom interactions are dominant. Here, we experimentally observe this transition by shifting the band edge frequency of the PCW relative to the [Formula: see text] line of atomic cesium for [Formula: see text] atoms trapped along the PCW. Our results are the initial demonstration of this paradigm for coherent atom-atom interactions with low dissipation into the guided mode.

摘要

调整量子发射体与单光子之间的相互作用是量子光学的基石之一。将量子发射体耦合到光子晶体波导(PCW)的带边提供了一个用于调节这些相互作用的独特平台。特别地,从带隙外的传播场[公式:见正文]到带隙内的局域场[公式:见正文]的转变,应该伴随着从主要是耗散性的原子 - 原子相互作用到色散性原子 - 原子相互作用占主导的 regime 的转变。在这里,我们通过相对于沿 PCW 捕获的[公式:见正文]原子的铯原子的[公式:见正文]线移动 PCW 的带边频率,实验性地观察到了这种转变。我们的结果是这种用于与低耗散到导模中的相干原子 - 原子相互作用的范式的初步证明。

相似文献

1
Atom-atom interactions around the band edge of a photonic crystal waveguide.光子晶体波导能带边缘周围的原子-原子相互作用。
Proc Natl Acad Sci U S A. 2016 Sep 20;113(38):10507-12. doi: 10.1073/pnas.1603788113. Epub 2016 Aug 31.
2
Superradiance for Atoms Trapped along a Photonic Crystal Waveguide.光子晶体波导中囚禁原子的超辐射。
Phys Rev Lett. 2015 Aug 7;115(6):063601. doi: 10.1103/PhysRevLett.115.063601. Epub 2015 Aug 5.
3
Coupling of light and mechanics in a photonic crystal waveguide.光子晶体波导中光与力学的耦合
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29422-29430. doi: 10.1073/pnas.2014851117. Epub 2020 Nov 9.
4
Quantum spin dynamics with pairwise-tunable, long-range interactions.具有成对可调谐长程相互作用的量子自旋动力学。
Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):E4946-55. doi: 10.1073/pnas.1603777113. Epub 2016 Aug 5.
7
Waveguide-coupled single collective excitation of atomic arrays.原子阵列的波导耦合单集体激发
Nature. 2019 Feb;566(7744):359-362. doi: 10.1038/s41586-019-0902-3. Epub 2019 Feb 4.
8
Two-dimensional photonic crystals for engineering atom-light interactions.用于工程化原子与光相互作用的二维光子晶体。
Proc Natl Acad Sci U S A. 2019 Jun 25;116(26):12743-12751. doi: 10.1073/pnas.1822110116. Epub 2019 Jun 12.
9
Clocked atom delivery to a photonic crystal waveguide.时钟原子输送到光子晶体波导中。
Proc Natl Acad Sci U S A. 2019 Jan 8;116(2):456-465. doi: 10.1073/pnas.1817249115. Epub 2018 Dec 26.

引用本文的文献

2
Directional spontaneous emission in photonic crystal slabs.光子晶体平板中的定向自发辐射
Nanophotonics. 2024 Feb 26;13(11):1963-1973. doi: 10.1515/nanoph-2023-0843. eCollection 2024 May.
7
Coupling of light and mechanics in a photonic crystal waveguide.光子晶体波导中光与力学的耦合
Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29422-29430. doi: 10.1073/pnas.2014851117. Epub 2020 Nov 9.

本文引用的文献

1
Quantum spin dynamics with pairwise-tunable, long-range interactions.具有成对可调谐长程相互作用的量子自旋动力学。
Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):E4946-55. doi: 10.1073/pnas.1603777113. Epub 2016 Aug 5.
3
Superradiance for Atoms Trapped along a Photonic Crystal Waveguide.光子晶体波导中囚禁原子的超辐射。
Phys Rev Lett. 2015 Aug 7;115(6):063601. doi: 10.1103/PhysRevLett.115.063601. Epub 2015 Aug 5.
5
Photon-mediated interactions between distant artificial atoms.光子介导的远程人工原子相互作用。
Science. 2013 Dec 20;342(6165):1494-6. doi: 10.1126/science.1244324. Epub 2013 Nov 14.
6
Coupling a single trapped atom to a nanoscale optical cavity.将单个被捕获原子与纳米光学腔耦合。
Science. 2013 Jun 7;340(6137):1202-5. doi: 10.1126/science.1237125. Epub 2013 Apr 25.
7
Superconducting circuits for quantum information: an outlook.超导电路量子信息:展望
Science. 2013 Mar 8;339(6124):1169-74. doi: 10.1126/science.1231930.
8
Demonstration of a state-insensitive, compensated nanofiber trap.展示一种对状态不敏感、补偿的纳米纤维阱。
Phys Rev Lett. 2012 Jul 20;109(3):033603. doi: 10.1103/PhysRevLett.109.033603. Epub 2012 Jul 19.
9
Controlled coupling of a single nitrogen-vacancy center to a silver nanowire.控制单个氮空位中心与银纳米线的耦合。
Phys Rev Lett. 2011 Mar 4;106(9):096801. doi: 10.1103/PhysRevLett.106.096801. Epub 2011 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验