Haag Sara, Sloan Katherine E, Ranjan Namit, Warda Ahmed S, Kretschmer Jens, Blessing Charlotte, Hübner Benedikt, Seikowski Jan, Dennerlein Sven, Rehling Peter, Rodnina Marina V, Höbartner Claudia, Bohnsack Markus T
Institute for Molecular Biology, University Medical Center Göttingen Georg-August-University, Göttingen, Germany.
Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
EMBO J. 2016 Oct 4;35(19):2104-2119. doi: 10.15252/embj.201694885. Epub 2016 Aug 5.
Mitochondrial gene expression uses a non-universal genetic code in mammals. Besides reading the conventional AUG codon, mitochondrial (mt-)tRNA mediates incorporation of methionine on AUA and AUU codons during translation initiation and on AUA codons during elongation. We show that the RNA methyltransferase NSUN3 localises to mitochondria and interacts with mt-tRNA to methylate cytosine 34 (C34) at the wobble position. NSUN3 specifically recognises the anticodon stem loop (ASL) of the tRNA, explaining why a mutation that compromises ASL basepairing leads to disease. We further identify ALKBH1/ABH1 as the dioxygenase responsible for oxidising mC34 of mt-tRNA to generate an fC34 modification. In vitro codon recognition studies with mitochondrial translation factors reveal preferential utilisation of mC34 mt-tRNA in initiation. Depletion of either NSUN3 or ABH1 strongly affects mitochondrial translation in human cells, implying that modifications generated by both enzymes are necessary for mt-tRNA function. Together, our data reveal how modifications in mt-tRNA are generated by the sequential action of NSUN3 and ABH1, allowing the single mitochondrial tRNA to recognise the different codons encoding methionine.
线粒体基因表达在哺乳动物中使用非通用遗传密码。除了识别传统的AUG密码子外,线粒体(mt-)tRNA在翻译起始过程中介导甲硫氨酸掺入AUA和AUU密码子,并在延伸过程中介导甲硫氨酸掺入AUA密码子。我们发现RNA甲基转移酶NSUN3定位于线粒体,并与mt-tRNA相互作用,使摆动位置的胞嘧啶34(C34)发生甲基化。NSUN3特异性识别tRNA的反密码子茎环(ASL),这解释了为什么破坏ASL碱基配对的突变会导致疾病。我们进一步确定ALKBH1/ABH1为负责氧化mt-tRNA的mC34以产生fC34修饰的双加氧酶。用线粒体翻译因子进行的体外密码子识别研究揭示了起始过程中mC34 mt-tRNA的优先利用。NSUN3或ABH1的缺失强烈影响人类细胞中的线粒体翻译,这意味着这两种酶产生的修饰对于mt-tRNA功能是必需的。总之,我们的数据揭示了mt-tRNA中的修饰是如何通过NSUN3和ABH1的顺序作用产生的,从而使单个线粒体tRNA能够识别编码甲硫氨酸的不同密码子。