Peña Noah, Hou Yichen, Watkins Christopher P, Huang Sihao, Zhang Wen, Katanski Christopher D, Pan Tao
Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA.
Committee on Genomics, Genetics, and Systems Biology, University of Chicago, Chicago, IL, USA.
Nat Commun. 2025 May 30;16(1):5041. doi: 10.1038/s41467-025-59435-5.
Transfer RNA (tRNA) is the most abundant cellular RNA family in terms of copy numbers. It not only folds into defined structures but also has complex cellular interaction networks involving aminoacyl-tRNA synthetases, translation factors, and ribosomes. The human tRNAome is comprised of chromosomal-encoded tRNAs with a large sequence diversity and mitochondrial-encoded tRNAs with A/U-rich sequences and noncanonical tertiary interactions. How tRNA folding and interactions in a eukaryotic cell respond to stress is poorly understood. Here, we develop DM-DMS-MaPseq, which utilizes in vivo dimethyl-sulfate (DMS) chemical probing and mutational profiling (MaP) coupled with demethylase (DM) treatment in transcriptome-wide tRNA sequencing to profile structures and the cellular interactions of human chromosomal and mitochondrial-encoded tRNAs. We found that tRNAs maintain stable structures in vivo, but the in vivo DMS profiles are vastly different from those in vitro, which can be explained by their interactions with cellular proteins and the ribosome. We also identify cytosolic and mitochondrial tRNA structure and interaction changes upon arsenite treatment, a type of oxidative stress that induces translational reprogramming, which is consistent with global translation repression in both compartments. Our results reveal variations of tRNA structurome and dynamic interactome that have functional consequences in translational regulation.
转运RNA(tRNA)就拷贝数而言是细胞中最为丰富的RNA家族。它不仅能折叠成特定结构,还拥有涉及氨酰tRNA合成酶、翻译因子和核糖体的复杂细胞相互作用网络。人类tRNA组由具有高度序列多样性的染色体编码tRNA和具有富含A/U序列及非典型三级相互作用的线粒体编码tRNA组成。目前对于真核细胞中tRNA折叠和相互作用如何应对压力了解甚少。在此,我们开发了DM-DMS-MaPseq,该方法在全转录组范围的tRNA测序中利用体内硫酸二甲酯(DMS)化学探针和突变分析(MaP)并结合去甲基化酶(DM)处理,以分析人类染色体和线粒体编码tRNA的结构及细胞相互作用。我们发现tRNA在体内维持稳定结构,但体内DMS图谱与体外图谱有很大差异,这可以通过它们与细胞蛋白和核糖体的相互作用来解释。我们还鉴定了亚砷酸盐处理后胞质和线粒体tRNA的结构及相互作用变化,亚砷酸盐是一种诱导翻译重编程的氧化应激类型,这与两个区室中的整体翻译抑制一致。我们的结果揭示了tRNA结构组和动态相互作用组的变化,这些变化在翻译调控中具有功能后果。