Suppr超能文献

红细胞是脑微循环的氧传感调节因子。

Erythrocytes Are Oxygen-Sensing Regulators of the Cerebral Microcirculation.

作者信息

Wei Helen Shinru, Kang Hongyi, Rasheed Izad-Yar Daniel, Zhou Sitong, Lou Nanhong, Gershteyn Anna, McConnell Evan Daniel, Wang Yixuan, Richardson Kristopher Emil, Palmer Andre Francis, Xu Chris, Wan Jiandi, Nedergaard Maiken

机构信息

Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA.

Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.

出版信息

Neuron. 2016 Aug 17;91(4):851-862. doi: 10.1016/j.neuron.2016.07.016. Epub 2016 Aug 4.

Abstract

Energy production in the brain depends almost exclusively on oxidative metabolism. Neurons have small energy reserves and require a continuous supply of oxygen (O2). It is therefore not surprising that one of the hallmarks of normal brain function is the tight coupling between cerebral blood flow and neuronal activity. Since capillaries are embedded in the O2-consuming neuropil, we have here examined whether activity-dependent dips in O2 tension drive capillary hyperemia. In vivo analyses showed that transient dips in tissue O2 tension elicit capillary hyperemia. Ex vivo experiments revealed that red blood cells (RBCs) themselves act as O2 sensors that autonomously regulate their own deformability and thereby flow velocity through capillaries in response to physiological decreases in O2 tension. This observation has broad implications for understanding how local changes in blood flow are coupled to synaptic transmission.

摘要

大脑中的能量产生几乎完全依赖于氧化代谢。神经元的能量储备较少,需要持续的氧气(O2)供应。因此,正常脑功能的一个标志是脑血流量与神经元活动之间的紧密耦合也就不足为奇了。由于毛细血管嵌入消耗氧气的神经纤维中,我们在此研究了氧气张力的活动依赖性下降是否会驱动毛细血管充血。体内分析表明,组织氧气张力的短暂下降会引发毛细血管充血。体外实验表明,红细胞(RBCs)本身充当氧气传感器,可自主调节自身的变形能力,从而响应氧气张力的生理下降来调节通过毛细血管的流速。这一观察结果对于理解血流的局部变化如何与突触传递相耦合具有广泛的意义。

相似文献

1
Erythrocytes Are Oxygen-Sensing Regulators of the Cerebral Microcirculation.
Neuron. 2016 Aug 17;91(4):851-862. doi: 10.1016/j.neuron.2016.07.016. Epub 2016 Aug 4.
2
Oxygen tension-mediated erythrocyte membrane interactions regulate cerebral capillary hyperemia.
Sci Adv. 2019 May 29;5(5):eaaw4466. doi: 10.1126/sciadv.aaw4466. eCollection 2019 May.
4
Regulation of oxygen supply in the cerebral circulation.
Adv Exp Med Biol. 1997;428:513-20. doi: 10.1007/978-1-4615-5399-1_73.
5
Oxygen- and pressure-dependent functional capillary density in rabbit tenuissimus muscle.
Int J Microcirc Clin Exp. 1995 Sep-Oct;15(5):271-5. doi: 10.1159/000179029.
7
Intestinal capillary blood flow during metabolic hyperemia.
Am J Physiol. 1979 Dec;237(6):E548-54. doi: 10.1152/ajpendo.1979.237.6.E548.
8
The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism.
J Cereb Blood Flow Metab. 2012 Feb;32(2):264-77. doi: 10.1038/jcbfm.2011.153. Epub 2011 Nov 2.
9
[Mechanisms of O2 transport in the microcirculatory system].
Fiziol Zh SSSR Im I M Sechenova. 1987 May;73(5):569-78.
10
Evidence for role of capillaries in regulation of skeletal muscle oxygen supply.
Microcirculation. 2021 Aug;28(6):e12699. doi: 10.1111/micc.12699. Epub 2021 May 7.

引用本文的文献

1
Depth-dependent contributions of various vascular zones to cerebral autoregulation and functional hyperemia: An in-silico analysis.
PLoS One. 2025 May 19;20(5):e0321053. doi: 10.1371/journal.pone.0321053. eCollection 2025.
2
Myelin sheaths can act as compact temporary oxygen storage units as modeled by an electrical RC circuit model.
Proc Natl Acad Sci U S A. 2025 May 20;122(20):e2422437122. doi: 10.1073/pnas.2422437122. Epub 2025 May 16.
4
Neurovascular coupling and CO interrogate distinct vascular regulations.
Nat Commun. 2024 Sep 2;15(1):7635. doi: 10.1038/s41467-024-49698-9.
5
Multiphoton fluorescence microscopy for in vivo imaging.
Cell. 2024 Aug 22;187(17):4458-4487. doi: 10.1016/j.cell.2024.07.036.
6
Chronic sleep fragmentation impairs brain interstitial clearance in young wildtype mice.
J Cereb Blood Flow Metab. 2024 Sep;44(9):1515-1531. doi: 10.1177/0271678X241230188. Epub 2024 Apr 19.
7
Oxygen imaging of hypoxic pockets in the mouse cerebral cortex.
Science. 2024 Mar 29;383(6690):1471-1478. doi: 10.1126/science.adn1011. Epub 2024 Mar 28.
8
Metabolite and protein shifts in mature erythrocyte under hypoxia.
iScience. 2024 Feb 23;27(4):109315. doi: 10.1016/j.isci.2024.109315. eCollection 2024 Apr 19.
9
Optogenetic demonstration of the involvement of SMA-negative mural cells in the regulation of cerebral blood flow.
Front Physiol. 2023 Dec 22;14:1322250. doi: 10.3389/fphys.2023.1322250. eCollection 2023.
10
Modeling tissue co-regulation estimates tissue-specific contributions to disease.
Nat Genet. 2023 Sep;55(9):1503-1511. doi: 10.1038/s41588-023-01474-z. Epub 2023 Aug 14.

本文引用的文献

1
Piezo1 regulates mechanotransductive release of ATP from human RBCs.
Proc Natl Acad Sci U S A. 2015 Sep 22;112(38):11783-8. doi: 10.1073/pnas.1507309112. Epub 2015 Sep 8.
4
Regulation of blood flow in the retinal trilaminar vascular network.
J Neurosci. 2014 Aug 20;34(34):11504-13. doi: 10.1523/JNEUROSCI.1971-14.2014.
5
A critical role for the vascular endothelium in functional neurovascular coupling in the brain.
J Am Heart Assoc. 2014 Jun 12;3(3):e000787. doi: 10.1161/JAHA.114.000787.
6
Capillary pericytes regulate cerebral blood flow in health and disease.
Nature. 2014 Apr 3;508(7494):55-60. doi: 10.1038/nature13165. Epub 2014 Mar 26.
7
The oxygen paradox of neurovascular coupling.
J Cereb Blood Flow Metab. 2014 Jan;34(1):19-29. doi: 10.1038/jcbfm.2013.181. Epub 2013 Oct 23.
8
α1-Adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in awake, behaving mice.
Cell Calcium. 2013 Dec;54(6):387-94. doi: 10.1016/j.ceca.2013.09.001. Epub 2013 Sep 24.
9
Sleep drives metabolite clearance from the adult brain.
Science. 2013 Oct 18;342(6156):373-7. doi: 10.1126/science.1241224.
10
Imaging local neuronal activity by monitoring PO₂ transients in capillaries.
Nat Med. 2013 Feb;19(2):241-6. doi: 10.1038/nm.3059. Epub 2013 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验