Suppr超能文献

希尔伯特空间中线性逆问题的最优收敛速率结果

Optimal Convergence Rates Results for Linear Inverse Problems in Hilbert Spaces.

作者信息

Albani V, Elbau P, de Hoop M V, Scherzer O

机构信息

Computational Science Center, University of Vienna , Vienna , Austria.

Department of Computational and Applied Mathematics and Department of Earth Science, Rice University , Houston , Texas , USA.

出版信息

Numer Funct Anal Optim. 2016 Feb 2;37(5):521-540. doi: 10.1080/01630563.2016.1144070. Epub 2016 Feb 8.

Abstract

In this article, we prove optimal convergence rates results for regularization methods for solving linear ill-posed operator equations in Hilbert spaces. The results generalizes existing convergence rates results on optimality to general source conditions, such as logarithmic source conditions. Moreover, we also provide optimality results under variational source conditions and show the connection to approximative source conditions.

摘要

在本文中,我们证明了用于求解希尔伯特空间中线性不适定算子方程的正则化方法的最优收敛速率结果。这些结果将现有的关于最优性的收敛速率结果推广到一般的源条件,如对数源条件。此外,我们还给出了变分源条件下的最优性结果,并展示了其与近似源条件的联系。

相似文献

1
Optimal Convergence Rates Results for Linear Inverse Problems in Hilbert Spaces.希尔伯特空间中线性逆问题的最优收敛速率结果
Numer Funct Anal Optim. 2016 Feb 2;37(5):521-540. doi: 10.1080/01630563.2016.1144070. Epub 2016 Feb 8.
4
A Range Condition for Polyconvex Variational Regularization.多凸变分正则化的一个范围条件。
Numer Funct Anal Optim. 2018 Jul 24;39(10):1064-1076. doi: 10.1080/01630563.2018.1467447. eCollection 2018.
7
Efficient variational Bayesian approximation method based on subspace optimization.基于子空间优化的高效变分贝叶斯逼近方法。
IEEE Trans Image Process. 2015 Feb;24(2):681-93. doi: 10.1109/TIP.2014.2383321. Epub 2014 Dec 18.
8
[Not Available].[无可用内容]
Appl Math Comput. 2011 Nov 15;218(6):2693-2710. doi: 10.1016/j.amc.2011.08.009.

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验