Suppr超能文献

具有变分不等式约束和不动点问题的分裂单调变分包含的强收敛定理。

Strong convergence theorem for split monotone variational inclusion with constraints of variational inequalities and fixed point problems.

作者信息

Guan Jin-Lin, Ceng Lu-Chuan, Hu Bing

机构信息

1Department of Mathematics, Shanghai Normal University, Shanghai, China.

2LAMPS and Department of Mathematics and Statistics, York University, Toronto, Canada.

出版信息

J Inequal Appl. 2018;2018(1):311. doi: 10.1186/s13660-018-1905-6. Epub 2018 Nov 15.

Abstract

In this paper, inspired by Jitsupa et al. (J. Comput. Appl. Math. 318:293-306, 2017), we propose a general iterative scheme for finding a solution of a split monotone variational inclusion with the constraints of a variational inequality and a fixed point problem of a finite family of strict pseudo-contractions in real Hilbert spaces. Under very mild conditions, we prove a strong convergence theorem for this iterative scheme. Our result improves and extends the corresponding ones announced by some others in the earlier and recent literature.

摘要

在本文中,受吉苏帕等人(《计算与应用数学杂志》318:293 - 306,2017)的启发,我们提出了一种通用的迭代方案,用于在实希尔伯特空间中找到一个分裂单调变分包含问题的解,该问题带有一个变分不等式的约束以及一族有限严格伪压缩映射的不动点问题。在非常温和的条件下,我们证明了该迭代方案的一个强收敛定理。我们的结果改进并扩展了早期和近期文献中其他一些人所宣布的相应结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7053/6244756/ab673351ae67/13660_2018_1905_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验