Suppr超能文献

机械加载抑制了仿生水凝胶中软骨分化的人间充质干细胞的肥大。

Mechanical loading inhibits hypertrophy in chondrogenically differentiating hMSCs within a biomimetic hydrogel.

作者信息

Aisenbrey E A, Bryant S J

机构信息

University of Colorado,Boulder. Chemical and Biological Engineering, UCB 596. Boulder, CO. 80309.

出版信息

J Mater Chem B. 2016 May 28;4(20):3562-3574. doi: 10.1039/c6tb00006a. Epub 2016 Mar 15.

Abstract

Three dimensional hydrogels are a promising vehicle for delivery of adult human bone-marrow derived mesenchymal stem cells (hMSCs) for cartilage tissue engineering. One of the challenges with using this cell type is the default pathway is terminal differentiation, a hypertrophic phenotype and precursor to endochondral ossification. We hypothesized that a synthetic hydrogel consisting of extracellular matrix (ECM) analogs derived from cartilage when combined with dynamic loading provides physiochemical cues for achieving a stable chondrogenic phenotype. Hydrogels were formed from crosslinked poly(ethylyene glycol) as the base chemistry and to which (meth)acrylate functionalized ECM analogs of RGD (cell adhesion peptide) and chondroitin sulfate (ChS, a negatively charged glycosaminoglycan) were introduced. Bone-marrow derived hMSCs from three donors were encapsulated in the hydrogels and cultured under free swelling conditions or under dynamic com pressive loading with 2.5 ng/ml TGF-β3. hMSC differentiation was assessed by quantitative PCR and immunohistochemistry. Nine hydrogel formulations were initially screened containing 0, 0.1 or 1mM RGD and 0, 1 or 2wt% ChS. After 21 days, the 1% ChS and 0.1 mM RGD hydrogel had the highest collagen II gene expression, but this was accompanied by high collagen X gene expression. At the protein level, collagen II was detected in all formulations with ECM analogs, but minimally detectable in the hydrogel without ECM analogs. Collagen X protein was present in all formulations. The 0.1 mM RGD and 1% ChS formulation was selected and subjected to five loading regimes: no loading, 5% strain 0.3Hz (1.5%/s), 10% strain 0.3 Hz (3%/s), 5% strain 1 Hz (5%/s), and 10% strain 1Hz (10%/s). After 21 days, ~70-90% of cells stained positive for collagen II protein regardless of the culture condition. On the contrary, only ~20-30% of cells stained positive for collagen X protein under 3 and 5%/s loading conditions, which was accompanied by minimal staining for RunX2. The other culture conditions had more cells staining positive for collagen X (40-60%) and was accompanied by positive staining for RunX2. In summary, a cartilage-like biomimetic hydrogel supports chondrogenesis of hMSCs, but dynamic loading only under select strain rates is able to inhibit hypertrophy.

摘要

三维水凝胶是用于软骨组织工程的成人骨髓间充质干细胞(hMSCs)递送的一种很有前景的载体。使用这种细胞类型的挑战之一是其默认途径是终末分化,即肥大表型,是软骨内骨化的前体。我们假设由软骨衍生的细胞外基质(ECM)类似物组成的合成水凝胶与动态加载相结合时,可为实现稳定的软骨生成表型提供物理化学线索。水凝胶由交联聚乙二醇作为基础化学物质形成,并引入了(甲基)丙烯酸酯功能化的RGD(细胞粘附肽)和硫酸软骨素(ChS,一种带负电荷的糖胺聚糖)的ECM类似物。来自三名供体的骨髓来源的hMSCs被封装在水凝胶中,并在自由膨胀条件下或在2.5 ng/ml TGF-β3的动态压缩加载下培养。通过定量PCR和免疫组织化学评估hMSC的分化。最初筛选了九种水凝胶配方,其中含有0、0.1或1 mM的RGD以及0、1或2 wt%的ChS。21天后,1% ChS和0.1 mM RGD水凝胶的胶原蛋白II基因表达最高,但同时胶原蛋白X基因表达也很高。在蛋白质水平上,在所有含有ECM类似物的配方中都检测到了胶原蛋白II,但在没有ECM类似物的水凝胶中检测到的量最少。所有配方中都存在胶原蛋白X蛋白。选择了0.1 mM RGD和1% ChS配方,并使其经历五种加载方式:无加载、5%应变0.3 Hz(1.5%/s)、10%应变0.3 Hz(3%/s)、5%应变1 Hz(5%/s)和10%应变1 Hz(10%/s)。21天后,无论培养条件如何,约70 - 90%的细胞胶原蛋白II蛋白染色呈阳性。相反,在3%/s和5%/s加载条件下,只有约20 - 30%的细胞胶原蛋白X蛋白染色呈阳性,同时RunX2染色最少。其他培养条件下有更多细胞胶原蛋白X染色呈阳性(40 - 60%),并伴有RunX2阳性染色。总之,一种类似软骨的仿生水凝胶支持hMSCs的软骨生成,但仅在特定应变率下的动态加载能够抑制肥大。

相似文献

1
Mechanical loading inhibits hypertrophy in chondrogenically differentiating hMSCs within a biomimetic hydrogel.
J Mater Chem B. 2016 May 28;4(20):3562-3574. doi: 10.1039/c6tb00006a. Epub 2016 Mar 15.
3
Chondroitin sulfate and dynamic loading alter chondrogenesis of human MSCs in PEG hydrogels.
Biotechnol Bioeng. 2012 Oct;109(10):2671-82. doi: 10.1002/bit.24519. Epub 2012 Apr 24.
4
The role of chondroitin sulfate in regulating hypertrophy during MSC chondrogenesis in a cartilage mimetic hydrogel under dynamic loading.
Biomaterials. 2019 Jan;190-191:51-62. doi: 10.1016/j.biomaterials.2018.10.028. Epub 2018 Oct 25.
5
Intact vitreous humor as a potential extracellular matrix hydrogel for cartilage tissue engineering applications.
Acta Biomater. 2019 Feb;85:117-130. doi: 10.1016/j.actbio.2018.12.022. Epub 2018 Dec 18.
7
Mechanical loading regulates human MSC differentiation in a multi-layer hydrogel for osteochondral tissue engineering.
Acta Biomater. 2015 Jul;21:142-53. doi: 10.1016/j.actbio.2015.04.015. Epub 2015 Apr 18.
9
Injectable Biodegradable Poly(ethylene glycol)/RGD Peptide Hybrid Hydrogels for in vitro Chondrogenesis of Human Mesenchymal Stem Cells.
Macromol Rapid Commun. 2010 Jul 1;31(13):1148-54. doi: 10.1002/marc.200900818. Epub 2010 May 25.

引用本文的文献

2
Controlled Mechanical Property Gradients Within a Digital Light Processing Printed Hydrogel-Composite Osteochondral Scaffold.
Ann Biomed Eng. 2024 Aug;52(8):2162-2177. doi: 10.1007/s10439-024-03516-x. Epub 2024 Apr 29.
3
Periodic static compression of micro-strain pattern regulates endochondral bone formation.
Front Bioeng Biotechnol. 2024 Mar 27;12:1356135. doi: 10.3389/fbioe.2024.1356135. eCollection 2024.
4
Three-dimensional bioprinting of artificial blood vessel: Process, bioinks, and challenges.
Int J Bioprint. 2023 Apr 28;9(4):740. doi: 10.18063/ijb.740. eCollection 2023.
5
6
A 3D printed mimetic composite for the treatment of growth plate injuries in a rabbit model.
NPJ Regen Med. 2022 Oct 19;7(1):60. doi: 10.1038/s41536-022-00256-1.
8
Cutting-Edge Technologies for Inflamed Joints on Chip: How Close Are We?
Front Immunol. 2022 Mar 10;13:802440. doi: 10.3389/fimmu.2022.802440. eCollection 2022.
9
Mechanotransducive Biomimetic Systems for Chondrogenic Differentiation In Vitro.
Int J Mol Sci. 2021 Sep 7;22(18):9690. doi: 10.3390/ijms22189690.
10
Effects of Mechanical Compression on Chondrogenesis of Human Synovium-Derived Mesenchymal Stem Cells in Agarose Hydrogel.
Front Bioeng Biotechnol. 2021 Jul 19;9:697281. doi: 10.3389/fbioe.2021.697281. eCollection 2021.

本文引用的文献

1
Matrilin-3 inhibits chondrocyte hypertrophy as a bone morphogenetic protein-2 antagonist.
J Biol Chem. 2014 Dec 12;289(50):34768-79. doi: 10.1074/jbc.M114.583104. Epub 2014 Oct 20.
2
Ionic osmolytes and intracellular calcium regulate tissue production in chondrocytes cultured in a 3D charged hydrogel.
Matrix Biol. 2014 Nov;40:17-26. doi: 10.1016/j.matbio.2014.08.002. Epub 2014 Aug 14.
3
Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation.
Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):12097-102. doi: 10.1073/pnas.1302703111. Epub 2014 Aug 4.
4
Flow-perfusion interferes with chondrogenic and hypertrophic matrix production by mesenchymal stem cells.
J Biomech. 2014 Jun 27;47(9):2122-9. doi: 10.1016/j.jbiomech.2013.11.006. Epub 2013 Nov 15.
5
Mesenchymal stem cells in joint disease and repair.
Nat Rev Rheumatol. 2013 Oct;9(10):584-94. doi: 10.1038/nrrheum.2013.109. Epub 2013 Jul 23.
6
Mechanical regulation of chondrogenesis.
Stem Cell Res Ther. 2013 Jul 1;4(4):61. doi: 10.1186/scrt211.
8
Matrix control of transforming growth factor-β function.
J Biochem. 2012 Oct;152(4):321-9. doi: 10.1093/jb/mvs089. Epub 2012 Aug 24.
9
ECM stiffness primes the TGFβ pathway to promote chondrocyte differentiation.
Mol Biol Cell. 2012 Sep;23(18):3731-42. doi: 10.1091/mbc.E12-03-0172. Epub 2012 Jul 25.
10
Chondroitin sulfate and dynamic loading alter chondrogenesis of human MSCs in PEG hydrogels.
Biotechnol Bioeng. 2012 Oct;109(10):2671-82. doi: 10.1002/bit.24519. Epub 2012 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验