Suppr超能文献

芯片上的骨骼肌分化显示人供体中血管周细胞在杜兴氏肌营养不良模型中恢复抗肌萎缩蛋白的效率。

Skeletal Muscle Differentiation on a Chip Shows Human Donor Mesoangioblasts' Efficiency in Restoring Dystrophin in a Duchenne Muscular Dystrophy Model.

作者信息

Serena Elena, Zatti Susi, Zoso Alice, Lo Verso Francesca, Tedesco F Saverio, Cossu Giulio, Elvassore Nicola

机构信息

Industrial Engineering Department, University of Padova, Padova, Italy.

Venetian Institute of Molecular Medicine, Padova, Italy.

出版信息

Stem Cells Transl Med. 2016 Dec;5(12):1676-1683. doi: 10.5966/sctm.2015-0053. Epub 2016 Aug 8.

Abstract

UNLABELLED

: Restoration of the protein dystrophin on muscle membrane is the goal of many research lines aimed at curing Duchenne muscular dystrophy (DMD). Results of ongoing preclinical and clinical trials suggest that partial restoration of dystrophin might be sufficient to significantly reduce muscle damage. Different myogenic progenitors are candidates for cell therapy of muscular dystrophies, but only satellite cells and pericytes have already entered clinical experimentation. This study aimed to provide in vitro quantitative evidence of the ability of mesoangioblasts to restore dystrophin, in terms of protein accumulation and distribution, within myotubes derived from DMD patients, using a microengineered model. We designed an ad hoc experimental strategy to miniaturize on a chip the standard process of muscle regeneration independent of variables such as inflammation and fibrosis. It is based on the coculture, at different ratios, of human dystrophin-positive myogenic progenitors and dystrophin-negative myoblasts in a substrate with muscle-like physiological stiffness and cell micropatterns. Results showed that both healthy myoblasts and mesoangioblasts restored dystrophin expression in DMD myotubes. However, mesoangioblasts showed unexpected efficiency with respect to myoblasts in dystrophin production in terms of the amount of protein produced (40% vs. 15%) and length of the dystrophin membrane domain (210-240 µm vs. 40-70 µm). These results show that our microscaled in vitro model of human DMD skeletal muscle validated previous in vivo preclinical work and may be used to predict efficacy of new methods aimed at enhancing dystrophin accumulation and distribution before they are tested in vivo, reducing time, costs, and variability of clinical experimentation.

SIGNIFICANCE

This study aimed to provide in vitro quantitative evidence of the ability of human mesoangioblasts to restore dystrophin, in terms of protein accumulation and distribution, within myotubes derived from patients with Duchenne muscular dystrophy (DMD), using a microengineered model. An ad hoc experimental strategy was designed to miniaturize on a chip the standard process of muscle regeneration independent of variables such as inflammation and fibrosis. This microscaled in vitro model, which validated previous in vivo preclinical work, revealed that mesoangioblasts showed unexpected efficiency as compared with myoblasts in dystrophin production. Consequently, this model may be used to predict efficacy of new drugs or therapies aimed at enhancing dystrophin accumulation and distribution before they are tested in vivo.

摘要

未标记

在肌膜上恢复抗肌萎缩蛋白是许多旨在治愈杜兴氏肌营养不良症(DMD)的研究方向的目标。正在进行的临床前和临床试验结果表明,抗肌萎缩蛋白的部分恢复可能足以显著减少肌肉损伤。不同的肌源性祖细胞是治疗肌营养不良症细胞疗法的候选者,但只有卫星细胞和周细胞已经进入临床实验。本研究旨在利用微工程模型,从蛋白质积累和分布方面,提供中胚层血管母细胞在源自DMD患者的肌管内恢复抗肌萎缩蛋白能力的体外定量证据。我们设计了一种特殊的实验策略,在芯片上微型化肌肉再生的标准过程,不受炎症和纤维化等变量的影响。它基于在具有肌肉样生理硬度和细胞微图案的基质中,以不同比例共培养人抗肌萎缩蛋白阳性肌源性祖细胞和抗肌萎缩蛋白阴性成肌细胞。结果表明,健康的成肌细胞和中胚层血管母细胞均可在DMD肌管中恢复抗肌萎缩蛋白的表达。然而,就产生的蛋白量(40%对15%)和抗肌萎缩蛋白膜结构域的长度(210 - 240微米对40 - 70微米)而言,中胚层血管母细胞在抗肌萎缩蛋白产生方面比成肌细胞表现出意想不到的效率。这些结果表明,我们的人类DMD骨骼肌微观体外模型验证了先前的体内临床前研究工作,可用于在新方法在体内测试之前预测旨在增强抗肌萎缩蛋白积累和分布的新方法的疗效,减少临床实验的时间、成本和变异性。

意义

本研究旨在利用微工程模型,从蛋白质积累和分布方面,提供人源中胚层血管母细胞在源自杜兴氏肌营养不良症(DMD)患者的肌管内恢复抗肌萎缩蛋白能力的体外定量证据。设计了一种特殊的实验策略,在芯片上微型化肌肉再生的标准过程,不受炎症和纤维化等变量的影响。这种微观体外模型验证了先前的体内临床前研究工作,显示中胚层血管母细胞在抗肌萎缩蛋白产生方面与成肌细胞相比表现出意想不到的效率。因此,该模型可用于在新药或疗法在体内测试之前预测旨在增强抗肌萎缩蛋白积累和分布的疗效。

相似文献

4
Nanotopography-responsive myotube alignment and orientation as a sensitive phenotypic biomarker for Duchenne Muscular Dystrophy.
Biomaterials. 2018 Nov;183:54-66. doi: 10.1016/j.biomaterials.2018.08.047. Epub 2018 Aug 21.
9
Concordant but Varied Phenotypes among Duchenne Muscular Dystrophy Patient-Specific Myoblasts Derived using a Human iPSC-Based Model.
Cell Rep. 2016 Jun 7;15(10):2301-2312. doi: 10.1016/j.celrep.2016.05.016. Epub 2016 May 26.
10
Repression of phosphatidylinositol transfer protein α ameliorates the pathology of Duchenne muscular dystrophy.
Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):6080-6085. doi: 10.1073/pnas.1703556114. Epub 2017 May 22.

引用本文的文献

1
The role of 3D printing in skeletal muscle-on-a-chip models: Current applications and future potential.
Mater Today Bio. 2025 Aug 20;34:102222. doi: 10.1016/j.mtbio.2025.102222. eCollection 2025 Oct.
2
Real-Time, Continuous Monitoring of Tissue Chips as an Emerging Opportunity for Biosensing.
Sensors (Basel). 2025 Aug 19;25(16):5153. doi: 10.3390/s25165153.
3
Human-based complex models: their promise and potential for rare disease therapeutics.
Front Cell Dev Biol. 2025 Jan 27;13:1526306. doi: 10.3389/fcell.2025.1526306. eCollection 2025.
4
Recent Trends in Biofabrication Technologies for Studying Skeletal Muscle Tissue-Related Diseases.
Front Bioeng Biotechnol. 2021 Oct 27;9:782333. doi: 10.3389/fbioe.2021.782333. eCollection 2021.
5
Tackling Current Biomedical Challenges With Frontier Biofabrication and Organ-On-A-Chip Technologies.
Front Bioeng Biotechnol. 2021 Sep 16;9:732130. doi: 10.3389/fbioe.2021.732130. eCollection 2021.
6
Biofabricating murine and human myo-substitutes for rapid volumetric muscle loss restoration.
EMBO Mol Med. 2021 Mar 5;13(3):e12778. doi: 10.15252/emmm.202012778. Epub 2021 Feb 15.
8
The role of satellite and other functional cell types in muscle repair and regeneration.
J Muscle Res Cell Motil. 2019 Mar;40(1):1-8. doi: 10.1007/s10974-019-09511-3. Epub 2019 Apr 9.
9
Human-Derived Organ-on-a-Chip for Personalized Drug Development.
Curr Pharm Des. 2018;24(45):5471-5486. doi: 10.2174/1381612825666190308150055.
10
The Importance of Biophysical and Biochemical Stimuli in Dynamic Skeletal Muscle Models.
Front Physiol. 2018 Aug 22;9:1130. doi: 10.3389/fphys.2018.01130. eCollection 2018.

本文引用的文献

1
Intra-arterial transplantation of HLA-matched donor mesoangioblasts in Duchenne muscular dystrophy.
EMBO Mol Med. 2015 Dec;7(12):1513-28. doi: 10.15252/emmm.201505636.
2
Human-on-chip for therapy development and fundamental science.
Curr Opin Biotechnol. 2014 Feb;25:45-50. doi: 10.1016/j.copbio.2013.08.015. Epub 2013 Sep 17.
4
Pericytes in development and pathology of skeletal muscle.
Circ Res. 2013 Jul 19;113(3):341-7. doi: 10.1161/CIRCRESAHA.113.300203.
5
Integrating human pluripotent stem cells into drug development.
Cell Stem Cell. 2013 Jun 6;12(6):669-77. doi: 10.1016/j.stem.2013.05.011.
6
Workshop meeting report Organs-on-Chips: human disease models.
Lab Chip. 2013 Sep 21;13(18):3449-70. doi: 10.1039/c3lc50248a.
7
Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity.
Circulation. 2013 Apr 23;127(16):1677-91. doi: 10.1161/CIRCULATIONAHA.113.001883. Epub 2013 Mar 21.
8
Repair or replace? Exploiting novel gene and cell therapy strategies for muscular dystrophies.
FEBS J. 2013 Sep;280(17):4263-80. doi: 10.1111/febs.12178. Epub 2013 Mar 4.
9
Individualization of drug therapy: history, present state, and opportunities for the future.
Clin Pharmacol Ther. 2012 Oct;92(4):458-66. doi: 10.1038/clpt.2012.113. Epub 2012 Sep 5.
10
Micropatterning topology on soft substrates affects myoblast proliferation and differentiation.
Langmuir. 2012 Feb 7;28(5):2718-26. doi: 10.1021/la204776e. Epub 2012 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验