Serena Elena, Zatti Susi, Zoso Alice, Lo Verso Francesca, Tedesco F Saverio, Cossu Giulio, Elvassore Nicola
Industrial Engineering Department, University of Padova, Padova, Italy.
Venetian Institute of Molecular Medicine, Padova, Italy.
Stem Cells Transl Med. 2016 Dec;5(12):1676-1683. doi: 10.5966/sctm.2015-0053. Epub 2016 Aug 8.
: Restoration of the protein dystrophin on muscle membrane is the goal of many research lines aimed at curing Duchenne muscular dystrophy (DMD). Results of ongoing preclinical and clinical trials suggest that partial restoration of dystrophin might be sufficient to significantly reduce muscle damage. Different myogenic progenitors are candidates for cell therapy of muscular dystrophies, but only satellite cells and pericytes have already entered clinical experimentation. This study aimed to provide in vitro quantitative evidence of the ability of mesoangioblasts to restore dystrophin, in terms of protein accumulation and distribution, within myotubes derived from DMD patients, using a microengineered model. We designed an ad hoc experimental strategy to miniaturize on a chip the standard process of muscle regeneration independent of variables such as inflammation and fibrosis. It is based on the coculture, at different ratios, of human dystrophin-positive myogenic progenitors and dystrophin-negative myoblasts in a substrate with muscle-like physiological stiffness and cell micropatterns. Results showed that both healthy myoblasts and mesoangioblasts restored dystrophin expression in DMD myotubes. However, mesoangioblasts showed unexpected efficiency with respect to myoblasts in dystrophin production in terms of the amount of protein produced (40% vs. 15%) and length of the dystrophin membrane domain (210-240 µm vs. 40-70 µm). These results show that our microscaled in vitro model of human DMD skeletal muscle validated previous in vivo preclinical work and may be used to predict efficacy of new methods aimed at enhancing dystrophin accumulation and distribution before they are tested in vivo, reducing time, costs, and variability of clinical experimentation.
This study aimed to provide in vitro quantitative evidence of the ability of human mesoangioblasts to restore dystrophin, in terms of protein accumulation and distribution, within myotubes derived from patients with Duchenne muscular dystrophy (DMD), using a microengineered model. An ad hoc experimental strategy was designed to miniaturize on a chip the standard process of muscle regeneration independent of variables such as inflammation and fibrosis. This microscaled in vitro model, which validated previous in vivo preclinical work, revealed that mesoangioblasts showed unexpected efficiency as compared with myoblasts in dystrophin production. Consequently, this model may be used to predict efficacy of new drugs or therapies aimed at enhancing dystrophin accumulation and distribution before they are tested in vivo.
在肌膜上恢复抗肌萎缩蛋白是许多旨在治愈杜兴氏肌营养不良症(DMD)的研究方向的目标。正在进行的临床前和临床试验结果表明,抗肌萎缩蛋白的部分恢复可能足以显著减少肌肉损伤。不同的肌源性祖细胞是治疗肌营养不良症细胞疗法的候选者,但只有卫星细胞和周细胞已经进入临床实验。本研究旨在利用微工程模型,从蛋白质积累和分布方面,提供中胚层血管母细胞在源自DMD患者的肌管内恢复抗肌萎缩蛋白能力的体外定量证据。我们设计了一种特殊的实验策略,在芯片上微型化肌肉再生的标准过程,不受炎症和纤维化等变量的影响。它基于在具有肌肉样生理硬度和细胞微图案的基质中,以不同比例共培养人抗肌萎缩蛋白阳性肌源性祖细胞和抗肌萎缩蛋白阴性成肌细胞。结果表明,健康的成肌细胞和中胚层血管母细胞均可在DMD肌管中恢复抗肌萎缩蛋白的表达。然而,就产生的蛋白量(40%对15%)和抗肌萎缩蛋白膜结构域的长度(210 - 240微米对40 - 70微米)而言,中胚层血管母细胞在抗肌萎缩蛋白产生方面比成肌细胞表现出意想不到的效率。这些结果表明,我们的人类DMD骨骼肌微观体外模型验证了先前的体内临床前研究工作,可用于在新方法在体内测试之前预测旨在增强抗肌萎缩蛋白积累和分布的新方法的疗效,减少临床实验的时间、成本和变异性。
本研究旨在利用微工程模型,从蛋白质积累和分布方面,提供人源中胚层血管母细胞在源自杜兴氏肌营养不良症(DMD)患者的肌管内恢复抗肌萎缩蛋白能力的体外定量证据。设计了一种特殊的实验策略,在芯片上微型化肌肉再生的标准过程,不受炎症和纤维化等变量的影响。这种微观体外模型验证了先前的体内临床前研究工作,显示中胚层血管母细胞在抗肌萎缩蛋白产生方面与成肌细胞相比表现出意想不到的效率。因此,该模型可用于在新药或疗法在体内测试之前预测旨在增强抗肌萎缩蛋白积累和分布的疗效。