Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany.
Laboratoire de Physique des Lasers, Université Paris 13, Sorbonne Paris Cité, CNRS, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France.
Nat Commun. 2016 Aug 9;7:12443. doi: 10.1038/ncomms12443.
Leveraging the unrivalled performance of optical clocks as key tools for geo-science, for astronomy and for fundamental physics beyond the standard model requires comparing the frequency of distant optical clocks faithfully. Here, we report on the comparison and agreement of two strontium optical clocks at an uncertainty of 5 × 10(-17) via a newly established phase-coherent frequency link connecting Paris and Braunschweig using 1,415 km of telecom fibre. The remote comparison is limited only by the instability and uncertainty of the strontium lattice clocks themselves, with negligible contributions from the optical frequency transfer. A fractional precision of 3 × 10(-17) is reached after only 1,000 s averaging time, which is already 10 times better and more than four orders of magnitude faster than any previous long-distance clock comparison. The capability of performing high resolution international clock comparisons paves the way for a redefinition of the unit of time and an all-optical dissemination of the SI-second.
利用光学时钟作为地球科学、天文学和超越标准模型的基础物理的关键工具,需要准确比较遥远光学时钟的频率。在这里,我们通过使用 1415 公里的电信光纤连接巴黎和不伦瑞克,建立了一个新的相干相位频率链路,报告了两个锶光学时钟在 5×10^(-17)的不确定度下的比较和一致性。远程比较仅受锶晶格钟本身的不稳定性和不确定性限制,光学频率传递的贡献可以忽略不计。在仅 1000 秒的平均时间后,达到了 3×10^(-17)的分数精度,这已经比以前的任何远距离时钟比较好 10 倍,快 4 个数量级。执行高分辨率国际时钟比较的能力为重新定义时间单位和 SI 秒的全光学传播铺平了道路。