National Institute of Standards and Technology (NIST), Boulder, CO 80305, USA.
Science. 2013 Sep 13;341(6151):1215-8. doi: 10.1126/science.1240420. Epub 2013 Aug 22.
Atomic clocks have been instrumental in science and technology, leading to innovations such as global positioning, advanced communications, and tests of fundamental constant variation. Timekeeping precision at 1 part in 10(18) enables new timing applications in relativistic geodesy, enhanced Earth- and space-based navigation and telescopy, and new tests of physics beyond the standard model. Here, we describe the development and operation of two optical lattice clocks, both using spin-polarized, ultracold atomic ytterbium. A measurement comparing these systems demonstrates an unprecedented atomic clock instability of 1.6 × 10(-18) after only 7 hours of averaging.
原子钟在科学和技术中发挥了重要作用,促成了全球定位、先进通信和基本常数变化测试等创新。其 10 的负 18 次方分之一的计时精度使得在相对论大地测量学、增强的地球和空间导航和望远镜以及超越标准模型的物理学新测试中实现了新的定时应用。在这里,我们描述了两个光学晶格钟的开发和运行,这两个钟都使用极化的超冷原子 ytterbium。一项比较这些系统的测量表明,在仅 7 小时的平均后,原子钟的不稳定性达到了前所未有的 1.6×10 的负 18 次方。