Kielinski Timm, Schmidt Piet O, Hammerer Klemens
Institute for Theoretical Physics and Institute for Gravitational Physics (Albert-Einstein-Institute), Leibniz University Hannover, Appelstrasse 2, 30167 Hannover, Germany.
Institute of Quantum Optics, Leibniz University Hannover, Welfengarten 1, 30167 Hannover, Germany.
Sci Adv. 2024 Oct 25;10(43):eadr1439. doi: 10.1126/sciadv.adr1439. Epub 2024 Oct 23.
The use of correlated states and measurements promises improvements in the accuracy of frequency metrology and the stability of atomic clocks. However, developing strategies robust against dominant noise processes remains challenging. We address the issue of decoherence due to spontaneous decay and show that Greenberger-Horne-Zeilinger (GHZ) states, in conjunction with a correlated measurement and nonlinear estimation strategy, achieve gains of up to 2.25 decibel, comparable to fundamental bounds for up to about 80 atoms in the presence of decoherence. This result is unexpected because GHZ states do not provide any enhancement under dephasing due to white frequency noise compared to the standard quantum limit of uncorrelated states. The gain arises from a veto signal, which allows for the detection and mitigation of errors caused by spontaneous emission events. Through comprehensive Monte Carlo simulations of atomic clocks, we demonstrate the robustness of the GHZ protocol.
使用关联态和测量有望提高频率计量的精度以及原子钟的稳定性。然而,开发针对主要噪声过程具有鲁棒性的策略仍然具有挑战性。我们解决了由于自发衰变导致的退相干问题,并表明格林伯格 - 霍恩 - 泽林格(GHZ)态,结合关联测量和非线性估计策略,在存在退相干的情况下,对于多达约80个原子可实现高达2.25分贝的增益,这与基本界限相当。这个结果是出乎意料的,因为与不相关态的标准量子极限相比,GHZ态在由白频率噪声引起的相位退相干下不会提供任何增强。这种增益源于一个否决信号,它允许检测和减轻由自发发射事件引起的误差。通过对原子钟进行全面的蒙特卡罗模拟,我们证明了GHZ协议的鲁棒性。