Suppr超能文献

通过人工神经网络、硝酸盐脆弱性指数和综合 DRASTIC 模型优化 DRASTIC 方法,评估伊朗设拉子平原无约束含水层的地下水脆弱性。

Optimization of DRASTIC method by artificial neural network, nitrate vulnerability index, and composite DRASTIC models to assess groundwater vulnerability for unconfined aquifer of Shiraz Plain, Iran.

机构信息

Department of Environmental Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, IR Iran.

Department of Civil Engineering, College of Engineering, Shiraz University, Shiraz, IR Iran.

出版信息

J Environ Health Sci Eng. 2016 Aug 9;14:13. doi: 10.1186/s40201-016-0254-y. eCollection 2016.

Abstract

BACKGROUND

Extensive human activities and unplanned land uses have put groundwater resources of Shiraz plain at a high risk of nitrate pollution, causing several environmental and human health issues. To address these issues, water resources managers utilize groundwater vulnerability assessment and determination of protection. This study aimed to prepare the vulnerability maps of Shiraz aquifer by using Composite DRASTIC index, Nitrate Vulnerability index, and artificial neural network and also to compare their efficiency.

METHODS

The parameters of the indexes that were employed in this study are: depth to water table, net recharge, aquifer media, soil media, topography, impact of the vadose zone, hydraulic conductivity, and land use. These parameters were rated, weighted, and integrated using GIS, and then, used to develop the risk maps of Shiraz aquifer.

RESULTS

The results indicated that the southeastern part of the aquifer was at the highest potential risk. Given the distribution of groundwater nitrate concentrations from the wells in the underlying aquifer, the artificial neural network model offered greater accuracy compared to the other two indexes. The study concluded that the artificial neural network model is an effective model to improve the DRASTIC index and provides a confident estimate of the pollution risk.

CONCLUSIONS

As intensive agricultural activities are the dominant land use and water table is shallow in the vulnerable zones, optimized irrigation techniques and a lower rate of fertilizers are suggested. The findings of our study could be used as a scientific basis in future for sustainable groundwater management in Shiraz plain.

摘要

背景

人类活动的广泛开展和土地利用的无规划,使得设拉子平原的地下水资源面临着硝酸盐污染的高风险,引发了一系列环境和人类健康问题。为了解决这些问题,水资源管理者利用地下水脆弱性评估和保护来确定。本研究旨在利用综合 DRASTIC 指数、硝酸盐脆弱性指数和人工神经网络来编制设拉子含水层的脆弱性图,并比较它们的效率。

方法

本研究中使用的指数参数包括:水位埋深、净补给量、含水层介质、土壤介质、地形、包气带影响、水力传导率和土地利用。这些参数在 GIS 中进行了评分、加权和综合,然后用于开发设拉子含水层的风险图。

结果

结果表明,含水层的东南部处于最高的潜在风险。考虑到下层含水层中水井的地下水硝酸盐浓度分布,人工神经网络模型比其他两个指数具有更高的准确性。研究结论认为,人工神经网络模型是改进 DRASTIC 指数的有效模型,能够对污染风险进行有信心的估计。

结论

由于集约型农业活动是主要的土地利用方式,脆弱区的地下水位较浅,建议采用优化的灌溉技术和较低的肥料施用量。本研究的结果可以作为未来设拉子平原可持续地下水管理的科学依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/572a/4977699/025134736817/40201_2016_254_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验