Suppr超能文献

一种考虑不确定性的地下水脆弱性混合统计决策优化方法。

A hybrid statistical decision-making optimization approach for groundwater vulnerability considering uncertainty.

作者信息

Gharakezloo Yalda Norouzi, Nikoo Mohammad Reza, Karimi-Jashni Ayoub, Mooselu Mehrdad Ghorbani

机构信息

Department of Civil and Environmental Engineering, Shiraz University, Shiraz, Iran.

Department of Civil and Architectural Engineering, Sultan Qaboos University, Muscat, Oman.

出版信息

Environ Sci Pollut Res Int. 2022 Feb;29(6):8597-8612. doi: 10.1007/s11356-021-16242-x. Epub 2021 Sep 7.

Abstract

Recognizing the vulnerable areas for contamination is a feasible way to protect groundwater resources. The main contribution of the paper is developing a hybrid statistical decision-making model for evaluating the vulnerability of Shiraz aquifer, southern Iran, with modified DRASTIC (depth to the water table, net recharge, aquifer media, soil media, topography, impact of the vadose zone, and hydraulic conductivity) by using the genetic algorithm (GA), the analytical hierarchy process (AHP) method, and factorial analysis (FA). First, considering the variation of the uncertain parameters, 32 scenarios were defined to perform factorial analysis. Then using the AHP method and GA, DRASTIC parameters were rated and weighted in all scenarios. To achieve the optimal weights for parameters, the objective function in GA was maximizing the correlation coefficient between the vulnerability index and the nitrate concentration. The single and interactive effects of parameters on groundwater vulnerability were analyzed by factorial analysis. The results revealed that the net recharge had the highest single effect, and the resulted effect between net recharge and hydraulic conductivity was the most significant interactive effect on the objective function. Besides, the variation of aquifer media does not change the objective function. The application of the proposed method leads to a precise groundwater vulnerability map. This research provides valuable knowledge for assessing groundwater vulnerability and enables decision-makers to apply groundwater vulnerability information in future water resources management plans.

摘要

识别污染脆弱区域是保护地下水资源的一种可行方法。本文的主要贡献在于开发了一种混合统计决策模型,用于评估伊朗南部设拉子含水层的脆弱性,该模型采用遗传算法(GA)、层次分析法(AHP)和因子分析(FA)对改进的DRASTIC模型(地下水位深度、净补给量、含水层介质、土壤介质、地形、包气带影响和水力传导率)进行评估。首先,考虑不确定参数的变化,定义了32种情景以进行因子分析。然后,使用AHP方法和GA,在所有情景中对DRASTIC参数进行评级和加权。为了获得参数的最优权重,GA中的目标函数是使脆弱性指数与硝酸盐浓度之间的相关系数最大化。通过因子分析分析了参数对地下水脆弱性的单一和交互作用。结果表明,净补给量的单一影响最大,净补给量与水力传导率之间的相互作用对目标函数的影响最为显著。此外,含水层介质的变化不会改变目标函数。所提出方法的应用产生了精确的地下水脆弱性图。本研究为评估地下水脆弱性提供了有价值的知识,并使决策者能够在未来的水资源管理计划中应用地下水脆弱性信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验