Figueroa Del Valle Diana Gisell, Moretti Luca, Maqueira-Albo Isis, Aluicio-Sarduy Eduardo, Kriegel Ilka, Lanzani Guglielmo, Scotognella Francesco
Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia (IIT) , Via Giovanni Pascoli, 70/3, 20133 Milan, Italy.
Dipartimento di Fisica, Politecnico di Milano , Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
J Phys Chem Lett. 2016 Sep 1;7(17):3353-8. doi: 10.1021/acs.jpclett.6b01377. Epub 2016 Aug 15.
Nowadays, SWCNTs are envisaged to enhance the charge separation or transport of conjugated polymer-fullerene derivatives blends. In this work we studied, by means of ultrafast transient absorption spectroscopy, three components blends in which commercially available SWCNTs are added to the standard bulk heterojunction. We explored three different configurations that give rise to diverse interfacing scenarios. We found strong evidence of a direct hole transfer from photoexcited SWCNTs to the P3HT polymer. The transfer efficiency depends on the interface configuration. It is the highest for the blend where we achieve closer contact between the (6,5) SWCNTs and the polymer. When the polymer blend is deposited on top of the nanotube film or the nanotube film is deposited onto the polymer blend, the process is slowed down due to less or missing interfacing of the carbon nanotubes with the polymer chains. Additionally we demonstrate a cascading effect in the electron path, which stabilizes charge separation by further transferring the electron left behind by hole transfer to the polymer to the adjacent (7,5) SWCNTs. Our results highlight the potential of semiconducting SWCNTs to improving the performance of organic solar cells.
如今,人们设想单壁碳纳米管(SWCNTs)可增强共轭聚合物 - 富勒烯衍生物共混物的电荷分离或传输。在这项工作中,我们通过超快瞬态吸收光谱法研究了三种组分的共混物,即将市售的单壁碳纳米管添加到标准体异质结中。我们探索了三种不同的配置,这些配置会产生不同的界面情况。我们发现了光激发的单壁碳纳米管向聚(3 - 己基噻吩)(P3HT)聚合物直接进行空穴转移的有力证据。转移效率取决于界面配置。对于(6,5)单壁碳纳米管与聚合物之间实现更紧密接触的共混物,转移效率最高。当聚合物共混物沉积在纳米管薄膜之上或纳米管薄膜沉积在聚合物共混物之上时,由于碳纳米管与聚合物链的界面较少或不存在,该过程会减慢。此外,我们证明了电子路径中的级联效应,即通过将空穴转移到聚合物后留下的电子进一步转移到相邻的(7,5)单壁碳纳米管来稳定电荷分离。我们的结果突出了半导体单壁碳纳米管在提高有机太阳能电池性能方面的潜力。