Kuang Zhuoran, Berger Felix J, Lustres Jose Luis Pérez, Wollscheid Nikolaus, Li Han, Lüttgens Jan, Leinen Merve Balcı, Flavel Benjamin S, Zaumseil Jana, Buckup Tiago
Physikalisch Chemisches Institut and Centre for Advanced Materials, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 229/253, Heidelberg 69120, Germany.
Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany.
J Phys Chem C Nanomater Interfaces. 2021 Apr 22;125(15):8125-8136. doi: 10.1021/acs.jpcc.0c10171. Epub 2021 Apr 14.
As narrow optical bandgap materials, semiconducting single-walled carbon nanotubes (SWCNTs) are rarely regarded as charge donors in photoinduced charge-transfer (PCT) reactions. However, the unique band structure and unusual exciton dynamics of SWCNTs add more possibilities to the classical PCT mechanism. In this work, we demonstrate PCT from photoexcited semiconducting (6,5) SWCNTs to a wide-bandgap wrapping poly-[(9,9-dioctylfluorenyl-2,7-diyl)--(6,6')-(2,2'-bipyridine)] (PFO-BPy) via femtosecond transient absorption spectroscopy. By monitoring the spectral dynamics of the SWCNT polaron, we show that charge transfer from photoexcited SWCNTs to PFO-BPy can be driven not only by the energetically favorable E transition but also by the energetically unfavorable E excitation under high pump fluence. This unusual PCT from narrow-bandgap SWCNTs toward a wide-bandgap polymer originates from the up-converted high-energy excitonic state (E or higher) that is promoted by the Auger recombination of excitons and charge carriers in SWCNTs. These insights provide new pathways for charge separation in SWCNT-based photodetectors and photovoltaic cells.
作为窄光学带隙材料,半导体单壁碳纳米管(SWCNT)在光致电荷转移(PCT)反应中很少被视为电荷供体。然而,SWCNT独特的能带结构和异常的激子动力学为经典的PCT机制增添了更多可能性。在这项工作中,我们通过飞秒瞬态吸收光谱证明了光激发的半导体(6,5)SWCNT向宽带隙包裹聚[(9,9-二辛基芴-2,7-二基)-(6,6')-(2,2'-联吡啶)](PFO-BPy)的PCT。通过监测SWCNT极化子的光谱动力学,我们表明,在高光泵浦通量下,从光激发的SWCNT到PFO-BPy的电荷转移不仅可以由能量有利的E跃迁驱动,也可以由能量不利的E激发驱动。这种从窄带隙SWCNT到宽带隙聚合物的异常PCT源于由SWCNT中的激子和电荷载流子的俄歇复合所促进的上转换高能激子态(E或更高)。这些见解为基于SWCNT的光电探测器和光伏电池中的电荷分离提供了新途径。