Ungur Liviu, Chibotaru Liviu F
Theory of Nanomaterials Group, Chemistry Department, Katholieke Universiteit Leuven , Celestijnenlaan 200F, 3001 Leuven, Belgium.
Chemistry Department, Lund University , Getingevagen 60, 22201 Lund, Sweden.
Inorg Chem. 2016 Oct 17;55(20):10043-10056. doi: 10.1021/acs.inorgchem.6b01353. Epub 2016 Aug 10.
Lanthanide-based single-molecule magnets are leading materials for achieving magnetization blocking at the level of one molecule. In this paper, we examine the physical requirements for efficient magnetization blocking in single-ion complexes and identify the design principles for achieving very high magnetization blocking barriers in lanthanide-based compounds. The key condition is the preponderant covalent binding of the Ln ion to one of the ligand atoms, tremendously enhancing the axial crystal field. We also make an overview of practical schemes for the implementation of this principle. These are (1) the effective lowering of the coordination number via displacement of the Ln ion to one of the atoms in the coordination polyhedron, (2) the design of two-coordinated complexes, and (3) the stabilization of diatomic compounds in cages and on surfaces. The last proposal is appealing in connection to spintronics applications, especially via the exploration of robust and highly anisotropic [LnX] units displaying multilevel blocking barriers of thousands of Kelvin and prospects for room-temperature magnetization blocking.
基于镧系元素的单分子磁体是在单个分子水平上实现磁化阻挡的领先材料。在本文中,我们研究了单离子配合物中有效磁化阻挡的物理要求,并确定了在基于镧系元素的化合物中实现非常高的磁化阻挡势垒的设计原则。关键条件是镧系离子与一个配体原子的主要共价结合,极大地增强了轴向晶体场。我们还概述了实施这一原则的实际方案。这些方案包括:(1)通过将镧系离子位移到配位多面体中的一个原子来有效降低配位数;(2)设计双配位配合物;(3)在笼子和表面稳定双原子化合物。最后一个提议与自旋电子学应用相关,特别是通过探索具有数千开尔文的多级阻挡势垒和室温磁化阻挡前景的稳健且高度各向异性的[LnX]单元。