International Research Centre for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University , Xi'an, Shaanxi 710049, China.
ACS Appl Mater Interfaces. 2016 Sep 7;8(35):23143-50. doi: 10.1021/acsami.6b07723. Epub 2016 Aug 25.
Charge transport in the bulk and across the semiconductor/electrolyte interface is one of the major issues that limits photoelectrochemical (PEC) performance in hematite photoelectrodes. Efficient charge transport in the entire hematite is of great importance to obtaining high photoelectrochemical properties. Herein, to reach this goal, we employed both TiO2 underlayer and overlayer deposition on hematite nanorod films, followed by a fast annealing treatment. The TiO2 underlayer and overlayer not only serve as dopant sources for carrier density increase but also reduce charge recombination at the fluorine-doped tin oxide (FTO)/hematite interface and accelerate charge transfer across the hematite/electrolyte interface. This synergistic doping and interface modifying effects give rise to an enhanced photoelectrochemical water oxidation performance of hematite nanorod arrays, generating an impressive photocurrent density of 1.49 mA cm(-2) at 1.23 V vs RHE. This is the first report on using both underlayer and overlayer modification with the same material to improve charge transport through the entire electron transport path in hematite, which provides a novel way to manipulate charge transfer across the semiconductor interface for a high-performance photoelectrode.
在赤铁矿光电极中,体相和半导体/电解质界面处的电荷输运是限制光电化学(PEC)性能的主要问题之一。在整个赤铁矿中实现有效的电荷输运对于获得高光电化学性能至关重要。在此,为了达到这一目标,我们在赤铁矿纳米棒薄膜上采用了 TiO2 底层和覆盖层沉积,随后进行快速退火处理。TiO2 底层和覆盖层不仅作为载流子密度增加的掺杂源,而且还减少了氟掺杂氧化锡(FTO)/赤铁矿界面处的电荷复合,并加速了赤铁矿/电解质界面处的电荷转移。这种协同掺杂和界面修饰效应导致赤铁矿纳米棒阵列的光电化学水氧化性能得到增强,在 1.23 V 相对于 RHE 时产生了令人印象深刻的 1.49 mA cm-2 的光电流密度。这是首次报道使用相同材料进行底层和覆盖层修饰以改善赤铁矿中整个电子输运路径中的电荷输运,为通过半导体界面操纵电荷转移以获得高性能光电极提供了一种新方法。