Trenczek-Zajac Anita, Synowiec Milena, Zakrzewska Katarzyna, Zazakowny Karolina, Kowalski Kazimierz, Dziedzic Andrzej, Radecka Marta
Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow 30-059, Poland.
Faculty of Computer Science, Electronics and Telecommunications, AGH University of Science and Technology, Krakow 30-059, Poland.
ACS Appl Mater Interfaces. 2022 Aug 24;14(33):38255-38269. doi: 10.1021/acsami.2c06404. Epub 2022 Aug 15.
Heterostructures of TiO@FeO with a specific electronic structure and morphology enable us to control the interfacial charge transport necessary for their efficient photocatalytic performance. In spite of the extensive research, there still remains a profound ambiguity as far as the band alignment at the interface of TiO@FeO is concerned. In this work, the extended type I heterojunction between anatase TiO nanocrystals and α-FeO hematite nanograins is proposed. Experimental evidence supporting this conclusion is based on direct measurements such as optical spectroscopy, X-ray photoemission spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), and the results of indirect studies of photocatalytic decomposition of rhodamine B (RhB) with selected scavengers of various active species of OH, h, e, and O. The presence of small 6-8 nm FeO crystallites at the surface of TiO has been confirmed in HRTEM images. Irregular 15-50 nm needle-like hematite grains could be observed in scanning electron micrographs. Substitutional incorporation of Fe ions into the TiO crystal lattice is predicted by a 0.16% decrease in lattice parameter a and a 0.08% change of c, as well as by a shift of the Raman E peak from 143 cm in pure TiO to 149 cm in FeO-modified TiO. Analysis of O 1s XPS spectra corroborates this conclusion, indicating the formation of oxygen vacancies at the surface of titanium(IV) oxide. The presence of the Fe impurity level in the forbidden band gap of TiO is revealed by the 2.80 eV optical transition. The size effect is responsible for the absorption feature appearing at 2.48 eV. Increased photocatalytic activity within the visible range suggests that the electron transfer involves high energy levels of FeO. Well-programed experiments with scavengers allow us to eliminate the less probable mechanisms of RhB photodecomposition and propose a band diagram of the TiO@FeO heterojunction.
具有特定电子结构和形态的TiO@FeO异质结构使我们能够控制其高效光催化性能所需的界面电荷传输。尽管进行了广泛的研究,但就TiO@FeO界面处的能带排列而言,仍然存在很大的不确定性。在这项工作中,提出了锐钛矿型TiO纳米晶体与α-FeO赤铁矿纳米颗粒之间的扩展I型异质结。支持这一结论的实验证据基于直接测量,如光谱学、X射线光电子能谱、扫描电子显微镜、高分辨率透射电子显微镜(HRTEM),以及用OH、h、e和O等各种活性物种的选定清除剂对罗丹明B(RhB)进行光催化分解的间接研究结果。HRTEM图像证实了TiO表面存在6-8nm的小FeO微晶。在扫描电子显微镜照片中可以观察到不规则的15-50nm针状赤铁矿颗粒。通过晶格参数a降低0.16%和c变化0.08%,以及拉曼E峰从纯TiO中的143cm位移到FeO改性TiO中的149cm,预测Fe离子替代掺入TiO晶格。O 1s XPS光谱分析证实了这一结论,表明在二氧化钛(IV)表面形成了氧空位。2.80eV的光学跃迁揭示了TiO禁带中Fe杂质能级的存在。尺寸效应导致了在2.48eV处出现吸收特征。可见光范围内光催化活性的增加表明电子转移涉及FeO的高能级。使用清除剂进行的精心设计的实验使我们能够排除RhB光分解的不太可能的机制,并提出TiO@FeO异质结的能带图。