Wang Guoqing, Akiyama Yoshitsugu, Shiraishi Shota, Kanayama Naoki, Takarada Tohru, Maeda Mizuo
Bioengineering Laboratory, RIKEN , 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
Bioconjug Chem. 2017 Jan 18;28(1):270-277. doi: 10.1021/acs.bioconjchem.6b00410. Epub 2016 Aug 19.
Gold nanoparticles densely modified with single-stranded DNA (ssDNA-AuNPs) form aggregates with cross-linker ssDNAs via duplex formation. Alternatively, the ssDNA-AuNPs are spontaneously aggregated at high ionic strength in a non-cross-linking manner when complementary ssDNAs are added to form fully matched duplexes. Both aggregation modes are accompanied by a red-to-purple color change, which has been exploited in various bioassays. The current study compares the rapidity of color change between the cross-linking and non-cross-linking aggregation modes under identical conditions. When a small number of cross-linker/complementary DNAs are provided, the cross-linking mode exhibited more rapid color change than the non-cross-linking mode. Conversely, with a large number of the DNAs, the non-cross-linking aggregation occurred more rapidly than the cross-linking counterpart. This finding allows one to select a more appropriate aggregation mode for application of ssDNA-AuNPs to colorimetric assays under given conditions.
用单链DNA(ssDNA-AuNPs)密集修饰的金纳米颗粒通过双链形成与交联剂ssDNA形成聚集体。另外,当添加互补单链DNA以形成完全匹配的双链体时,ssDNA-AuNPs在高离子强度下以非交联方式自发聚集。两种聚集模式都伴随着从红色到紫色的颜色变化,这已被用于各种生物测定中。当前的研究比较了在相同条件下交联和非交联聚集模式之间颜色变化的速度。当提供少量交联剂/互补DNA时,交联模式比非交联模式表现出更快的颜色变化。相反,使用大量的DNA时,非交联聚集比交联聚集发生得更快。这一发现使人们能够在给定条件下为将ssDNA-AuNPs应用于比色测定选择更合适的聚集模式。