Suppr超能文献

通过紫外脉冲激光辐照 3D 纳米结构喷墨打印石墨烯,实现了基于纸张的电子和电化学器件。

3D nanostructured inkjet printed graphene via UV-pulsed laser irradiation enables paper-based electronics and electrochemical devices.

机构信息

Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA.

出版信息

Nanoscale. 2016 Sep 21;8(35):15870-9. doi: 10.1039/c6nr04310k. Epub 2016 Aug 11.

Abstract

Emerging research on printed and flexible graphene-based electronics is beginning to show tremendous promise for a wide variety of fields including wearable sensors and thin film transistors. However, post-print annealing/reduction processes that are necessary to increase the electrical conductivity of the printed graphene degrade sensitive substrates (e.g., paper) and are whole substrate processes that are unable to selectively anneal/reduce only the printed graphene-leaving sensitive device components exposed to damaging heat or chemicals. Herein a pulsed laser process is introduced that can selectively irradiate inkjet printed reduced graphene oxide (RGO) and subsequently improve the electrical conductivity (Rsheet∼0.7 kΩ□(-1)) of printed graphene above previously published reports. Furthermore, the laser process is capable of developing 3D petal-like graphene nanostructures from 2D planar printed graphene. These visible morphological changes display favorable electrochemical sensing characteristics-ferricyanide cyclic voltammetry with a redox peak separation (ΔEp) ≈ 0.7 V as well as hydrogen peroxide (H2O2) amperometry with a sensitivity of 3.32 μA mM(-1) and a response time of <5 s. Thus this work paves the way for not only paper-based electronics with graphene circuits, it enables the creation of low-cost and disposable graphene-based electrochemical electrodes for myriad applications including sensors, biosensors, fuel cells, and theranostic devices.

摘要

新兴的打印和可弯曲石墨烯基电子产品研究开始在各种领域展现出巨大的潜力,包括可穿戴传感器和薄膜晶体管。然而,为了提高打印石墨烯的电导率而进行的后印刷退火/还原过程会降解敏感基底(例如纸张),并且是整个基底的过程,无法选择性地仅对打印石墨烯进行退火/还原,从而使敏感的器件组件暴露于有害的热量或化学物质中。在此,引入了一种脉冲激光工艺,可以选择性地辐照喷墨打印的还原氧化石墨烯(RGO),并随后提高打印石墨烯的电导率(Rsheet∼0.7 kΩ□(-1)),优于先前的报道。此外,激光工艺能够从二维平面印刷的石墨烯中开发出三维花瓣状石墨烯纳米结构。这些可见的形态变化显示出良好的电化学传感特性——亚铁氰化钾循环伏安法的氧化还原峰分离(ΔEp)≈0.7 V,以及过氧化氢(H2O2)安培法的灵敏度为 3.32 μA mM(-1),响应时间<5 s。因此,这项工作不仅为基于石墨烯电路的纸质电子产品铺平了道路,还为包括传感器、生物传感器、燃料电池和治疗诊断设备在内的众多应用创造了低成本和一次性的基于石墨烯的电化学电极。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验