Department of Mechanical Engineering and ‡Department of Genetics, Development and Cell Biology, Iowa State University , Ames, Iowa 50011, United States.
ACS Nano. 2017 Oct 24;11(10):9836-9845. doi: 10.1021/acsnano.7b03554. Epub 2017 Sep 29.
Solution-phase printing of nanomaterial-based graphene inks are rapidly gaining interest for fabrication of flexible electronics. However, scalable manufacturing techniques for high-resolution printed graphene circuits are still lacking. Here, we report a patterning technique [i.e., inkjet maskless lithography (IML)] to form high-resolution, flexible, graphene films (line widths down to 20 μm) that significantly exceed the current inkjet printing resolution of graphene (line widths ∼60 μm). IML uses an inkjet printed polymer lacquer as a sacrificial pattern, viscous spin-coated graphene, and a subsequent graphene lift-off to pattern films without the need for prefabricated stencils, templates, or cleanroom technology (e.g., photolithography). Laser annealing is employed to increase conductivity on thermally sensitive, flexible substrates [polyethylene terephthalate (PET)]. Laser annealing and subsequent platinum nanoparticle deposition substantially increases the electroactive nature of graphene as illustrated by electrochemical hydrogen peroxide (HO) sensing [rapid response (5 s), broad linear sensing range (0.1-550 μm), high sensitivity (0.21 μM/μA), and low detection limit (0.21 μM)]. Moreover, high-resolution, complex graphene circuits [i.e., interdigitated electrodes (IDE) with varying finger width and spacing] were created with IML and characterized via potassium chloride (KCl) electrochemical impedance spectroscopy (EIS). Results indicated that sensitivity directly correlates to electrode feature size as the IDE with the smallest finger width and spacing (50 and 50 μm) displayed the largest response to changes in KCl concentration (∼21 kΩ). These results indicate that the developed IML patterning technique is well-suited for rapid, solution-phase graphene film prototyping on flexible substrates for numerous applications including electrochemical sensing.
基于纳米材料的石墨烯喷墨在制造柔性电子产品方面迅速引起了人们的兴趣。然而,高分辨率打印石墨烯电路的规模化制造技术仍然缺乏。在这里,我们报告了一种图案化技术[即喷墨无掩模光刻(IML)],用于形成高分辨率、柔性的石墨烯薄膜(线宽低至 20 μm),这显著超过了当前喷墨打印石墨烯的分辨率(线宽约 60 μm)。IML 使用喷墨打印的聚合物漆作为牺牲图案、粘性旋涂的石墨烯,以及随后的石墨烯剥离,无需预制掩模、模板或洁净室技术(例如光刻)即可对图案进行图案化。激光退火用于提高热敏、柔性基底[聚对苯二甲酸乙二醇酯(PET)]上的导电性。激光退火和随后的铂纳米粒子沉积大大增加了石墨烯的电活性,如图所示,通过电化学过氧化氢(HO)传感[快速响应(5 s)、宽线性传感范围(0.1-550 μm)、高灵敏度(0.21 μM/μA)和低检测限(0.21 μM)]。此外,通过 IML 制造了高分辨率、复杂的石墨烯电路[例如,具有不同指宽和间隔的叉指电极(IDE)],并通过氯化钾(KCl)电化学阻抗谱(EIS)进行了表征。结果表明,灵敏度与电极特征尺寸直接相关,因为指宽和间隔最小(50 和 50 μm)的 IDE 对 KCl 浓度变化的响应最大(约 21 kΩ)。这些结果表明,所开发的 IML 图案化技术非常适合在柔性基底上快速进行溶液相石墨烯薄膜的原型制作,适用于许多应用,包括电化学传感。