Hansen N, Ostermeier A
Technische Universität Berlin, Fachgebiet für Bionik, Sekr. ACK 1, Ackerstr. 71-76, 13355 Berlin, Germany.
Evol Comput. 2001 Summer;9(2):159-95. doi: 10.1162/106365601750190398.
This paper puts forward two useful methods for self-adaptation of the mutation distribution - the concepts of derandomization and cumulation. Principle shortcomings of the concept of mutative strategy parameter control and two levels of derandomization are reviewed. Basic demands on the self-adaptation of arbitrary (normal) mutation distributions are developed. Applying arbitrary, normal mutation distributions is equivalent to applying a general, linear problem encoding. The underlying objective of mutative strategy parameter control is roughly to favor previously selected mutation steps in the future. If this objective is pursued rigorously, a completely derandomized self-adaptation scheme results, which adapts arbitrary normal mutation distributions. This scheme, called covariance matrix adaptation (CMA), meets the previously stated demands. It can still be considerably improved by cumulation - utilizing an evolution path rather than single search steps. Simulations on various test functions reveal local and global search properties of the evolution strategy with and without covariance matrix adaptation. Their performances are comparable only on perfectly scaled functions. On badly scaled, non-separable functions usually a speed up factor of several orders of magnitude is observed. On moderately mis-scaled functions a speed up factor of three to ten can be expected.
本文提出了两种用于变异分布自适应的有用方法——去随机化和累积的概念。回顾了变异策略参数控制概念的主要缺点以及两级去随机化。提出了对任意(正态)变异分布自适应的基本要求。应用任意正态变异分布等同于应用一般的线性问题编码。变异策略参数控制的潜在目标大致是在未来青睐先前选择的变异步长。如果严格追求这个目标,就会得到一个完全去随机化的自适应方案,它能适应任意正态变异分布。这个方案称为协方差矩阵自适应(CMA),满足先前提出的要求。通过累积——利用进化路径而非单个搜索步长,它仍可得到显著改进。对各种测试函数的模拟揭示了有无协方差矩阵自适应时进化策略的局部和全局搜索特性。它们的性能仅在完美缩放的函数上具有可比性。在严重缩放不当、不可分离的函数上,通常会观察到几个数量级的加速因子。在适度缩放不当的函数上,可预期有三到十倍的加速因子。