Department of Psychology, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC, H3A 1B1, Canada.
Chung-Ang University, Seoul, Korea.
Psychometrika. 2012 Jul;77(3):524-42. doi: 10.1007/s11336-012-9268-2. Epub 2012 May 26.
We propose a functional version of extended redundancy analysis that examines directional relationships among several sets of multivariate variables. As in extended redundancy analysis, the proposed method posits that a weighed composite of each set of exogenous variables influences a set of endogenous variables. It further considers endogenous and/or exogenous variables functional, varying over time, space, or other continua. Computationally, the method reduces to minimizing a penalized least-squares criterion through the adoption of a basis function expansion approach to approximating functions. We develop an alternating regularized least-squares algorithm to minimize this criterion. We apply the proposed method to real datasets to illustrate the empirical feasibility of the proposed method.
我们提出了一种扩展冗余分析的功能版本,用于检验多变量变量组之间的方向关系。与扩展冗余分析一样,所提出的方法假定,每个外生变量组的加权组合会影响一组内生变量。它进一步考虑了内源性和/或外源性变量的功能,随着时间、空间或其他连续体的变化而变化。在计算上,该方法通过采用基函数扩展方法来近似函数,从而将最小化惩罚最小二乘准则简化。我们开发了一种交替正则化最小二乘法算法来最小化这个准则。我们将所提出的方法应用于真实数据集,以说明所提出的方法的经验可行性。