Department of Statistics, Duksung Women's University, 33 Samyang-ro, 144-gil, Dobong-gu, Seoul, Republic of Korea.
Department of Statistics, Dongguk University, 26 Phil-dong 3ga, Jung-gu, Seoul, Republic of Korea.
Psychometrika. 2022 Sep;87(3):946-966. doi: 10.1007/s11336-021-09809-7. Epub 2021 Oct 15.
Extended redundancy analysis (ERA), a generalized version of redundancy analysis (RA), has been proposed as a useful method for examining interrelationships among multiple sets of variables in multivariate linear regression models. As a limitation of the extant RA or ERA analyses, however, parameters are estimated by aggregating data across all observations even in a case where the study population could consist of several heterogeneous subpopulations. In this paper, we propose a Bayesian mixture extension of ERA to obtain both probabilistic classification of observations into a number of subpopulations and estimation of ERA models within each subpopulation. It specifically estimates the posterior probabilities of observations belonging to different subpopulations, subpopulation-specific residual covariance structures, component weights and regression coefficients in a unified manner. We conduct a simulation study to demonstrate the performance of the proposed method in terms of recovering parameters correctly. We also apply the approach to real data to demonstrate its empirical usefulness.
扩展冗余分析(ERA)是一种冗余分析(RA)的广义版本,已被提议作为一种在多元线性回归模型中检查多组变量之间相互关系的有用方法。然而,由于现有 RA 或 ERA 分析的限制,即使研究人群可能由几个异质子群体组成,参数也是通过对所有观测值的数据进行汇总来估计的。在本文中,我们提出了 ERA 的贝叶斯混合扩展,以获得对观测值进行概率分类的方法,并在每个子群体中估计 ERA 模型。它以统一的方式特别估计了观测值属于不同子群体、子群体特定的残差协方差结构、组成权重和回归系数的后验概率。我们进行了一项模拟研究,以证明该方法在正确恢复参数方面的性能。我们还将该方法应用于实际数据,以证明其经验有用性。