Suppr超能文献

一种用于对从丝状结构中提取的亚断层图像进行缺失楔形不变量分类的简单快速方法。

A simple and fast approach for missing-wedge invariant classification of subtomograms extracted from filamentous structures.

作者信息

Obbineni Jagan Mohan, Yamamoto Ryosuke, Ishikawa Takashi

机构信息

Laboratory of Biomolecular Research, Paul Scherrer Institute and Department of Biology, ETH Zurich, Switzerland.

Shimoda Marine Research Center, University of Tsukuba, Japan.

出版信息

J Struct Biol. 2017 Feb;197(2):145-154. doi: 10.1016/j.jsb.2016.08.003. Epub 2016 Aug 11.

Abstract

Unsupervised classification of subtomograms extracted from cryo-electron tomograms is often challenging due to the presence of a missing wedge in tomographic data. Here, we propose a simple new approach to classify subtomograms extracted from cryo-electron tomograms of filamentous objects. This unsupervised classification approach uses the 1D projections of the subtomograms for classification and works independently of the orientations of the missing wedge. We applied this approach to subtomograms from eukaryotic cilia and successfully detected heterogeneity including structural polymorphism of dynein molecules.

摘要

由于断层扫描数据中存在缺失楔形,从冷冻电子断层扫描中提取的亚断层图的无监督分类通常具有挑战性。在这里,我们提出了一种简单的新方法来对从丝状物体的冷冻电子断层扫描中提取的亚断层图进行分类。这种无监督分类方法使用亚断层图的一维投影进行分类,并且独立于缺失楔形的方向工作。我们将这种方法应用于真核生物纤毛的亚断层图,并成功检测到包括动力蛋白分子结构多态性在内的异质性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验