Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia , Via Morego 30, 16163, Genoa, Italy.
IAS-5/INM-9 Computational Biomedicine and JARA-HPC, Forschungszentrum Jülich , Wilhelm-Johnen-Strasse, 52428 Jülich, Germany.
J Am Chem Soc. 2016 Nov 9;138(44):14592-14598. doi: 10.1021/jacs.6b05475. Epub 2016 Aug 31.
The enzymatic polymerization of DNA and RNA is the basis for genetic inheritance for all living organisms. It is catalyzed by the DNA/RNA polymerase (Pol) superfamily. Here, bioinformatics analysis reveals that the incoming nucleotide substrate always forms an H-bond between its 3'-OH and β-phosphate moieties upon formation of the Michaelis complex. This previously unrecognized H-bond implies a novel self-activated mechanism (SAM), which synergistically connects the in situ nucleophile formation with subsequent nucleotide addition and, importantly, nucleic acid translocation. Thus, SAM allows an elegant and efficient closed-loop sequence of chemical and physical steps for Pol catalysis. This is markedly different from previous mechanistic hypotheses. Our proposed mechanism is corroborated via ab initio QM/MM simulations on a specific Pol, the human DNA polymerase-η, an enzyme involved in repairing damaged DNA. The structural conservation of DNA and RNA Pols supports the possible extension of SAM to Pol enzymes from the three domains of life.
DNA 和 RNA 的酶促聚合是所有生物遗传的基础。它由 DNA/RNA 聚合酶 (Pol) 超家族催化。在这里,生物信息学分析表明,在形成 Michaelis 复合物时,进入的核苷酸底物总是在其 3'-OH 和 β-磷酸部分之间形成氢键。这种以前未被识别的氢键意味着一种新的自我激活机制 (SAM),它协同连接原位亲核形成与随后的核苷酸添加,重要的是,核酸易位。因此,SAM 允许 Pol 催化的化学和物理步骤的优雅和高效的闭环序列。这与以前的机械假设明显不同。我们提出的机制通过对特定 Pol(参与修复受损 DNA 的人 DNA 聚合酶 - η)的从头 ab initio QM/MM 模拟得到了证实。DNA 和 RNA Pol 的结构保守性支持 SAM 可能扩展到来自生命三个领域的 Pol 酶。