Castro Christian, Smidansky Eric, Maksimchuk Kenneth R, Arnold Jamie J, Korneeva Victoria S, Götte Matthias, Konigsberg William, Cameron Craig E
Department of Biochemistry and Molecular Biology, Pennsylvania State University, 201 Althouse Laboratory, University Park, PA 16802, USA.
Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4267-72. doi: 10.1073/pnas.0608952104. Epub 2007 Mar 5.
The rate-limiting step for nucleotide incorporation in the pre-steady state for most nucleic acid polymerases is thought to be a conformational change. As a result, very little information is available on the role of active-site residues in the chemistry of nucleotidyl transfer. For the poliovirus RNA-dependent RNA polymerase (3D(pol)), chemistry is partially (Mg(2+)) or completely (Mn(2+)) rate limiting. Here we show that nucleotidyl transfer depends on two ionizable groups with pK(a) values of 7.0 or 8.2 and 10.5, depending upon the divalent cation used in the reaction. A solvent deuterium isotope effect of three to seven was observed on the rate constant for nucleotide incorporation in the pre-steady state; none was observed in the steady state. Proton-inventory experiments were consistent with two protons being transferred during the rate-limiting transition state of the reaction, suggesting that both deprotonation of the 3'-hydroxyl nucleophile and protonation of the pyrophosphate leaving group occur in the transition state for phosphodiester bond formation. Importantly, two proton transfers occur in the transition state for nucleotidyl-transfer reactions catalyzed by RB69 DNA-dependent DNA polymerase, T7 DNA-dependent RNA polymerase and HIV reverse transcriptase. Interpretation of these data in the context of known polymerase structures suggests the existence of a general base for deprotonation of the 3'-OH nucleophile, although use of a water molecule cannot be ruled out conclusively, and a general acid for protonation of the pyrophosphate leaving group in all nucleic acid polymerases. These data imply an associative-like transition-state structure.
大多数核酸聚合酶在预稳态下核苷酸掺入的限速步骤被认为是构象变化。因此,关于活性位点残基在核苷酸转移化学过程中的作用,几乎没有可用信息。对于脊髓灰质炎病毒RNA依赖的RNA聚合酶(3D(pol)),化学过程部分(Mg(2+))或完全(Mn(2+))限速。我们在此表明,核苷酸转移取决于两个可电离基团,其pK(a)值分别为7.0或8.2以及10.5,这取决于反应中使用的二价阳离子。在预稳态下观察到核苷酸掺入速率常数的溶剂氘同位素效应为3至7;在稳态下未观察到。质子累积实验与反应限速过渡态期间两个质子转移一致,这表明3'-羟基亲核试剂的去质子化和焦磷酸离去基团的质子化均发生在磷酸二酯键形成的过渡态中。重要的是,在RB69 DNA依赖的DNA聚合酶、T7 DNA依赖的RNA聚合酶和HIV逆转录酶催化的核苷酸转移反应的过渡态中发生了两个质子转移。在已知聚合酶结构的背景下对这些数据的解释表明,存在一个用于3'-OH亲核试剂去质子化的通用碱,尽管不能完全排除使用水分子,并且在所有核酸聚合酶中存在一个用于焦磷酸离去基团质子化的通用酸。这些数据暗示了一种类似缔合的过渡态结构。